コード例 #1
0
    def __init__(self, numchans, taps=None, oversample_rate=1, atten=100):
        gr.hier_block2.__init__(
            self, "pfb_channelizer_ccf",
            gr.io_signature(1, 1, gr.sizeof_gr_complex),
            gr.io_signature(numchans, numchans, gr.sizeof_gr_complex))

        self._nchans = numchans
        self._oversample_rate = oversample_rate

        if (taps is not None) and (len(taps) > 0):
            self._taps = taps
        else:
            # Create a filter that covers the full bandwidth of the input signal
            bw = 0.4
            tb = 0.2
            ripple = 0.1
            made = False
            while not made:
                try:
                    self._taps = optfir.low_pass(1, self._nchans, bw, bw + tb,
                                                 ripple, atten)
                    made = True
                except RuntimeError:
                    ripple += 0.01
                    made = False
                    print(
                        "Warning: set ripple to %.4f dB. If this is a problem, adjust the attenuation or create your own filter taps."
                        % (ripple))

                    # Build in an exit strategy; if we've come this far, it ain't working.
                    if (ripple >= 1.0):
                        raise RuntimeError(
                            "optfir could not generate an appropriate filter.")

        self.s2ss = blocks.stream_to_streams(gr.sizeof_gr_complex,
                                             self._nchans)
        self.pfb = filter.pfb_channelizer_ccf(self._nchans, self._taps,
                                              self._oversample_rate)
        self.connect(self, self.s2ss)

        for i in xrange(self._nchans):
            self.connect((self.s2ss, i), (self.pfb, i))
            self.connect((self.pfb, i), (self, i))
コード例 #2
0
ファイル: pfb.py プロジェクト: Appiah/gnuradio
    def __init__(self, numchans, taps=None, oversample_rate=1, atten=100):
        gr.hier_block2.__init__(self, "pfb_channelizer_ccf",
                                gr.io_signature(1, 1, gr.sizeof_gr_complex),
                                gr.io_signature(numchans, numchans, gr.sizeof_gr_complex))

        self._nchans = numchans
        self._oversample_rate = oversample_rate

        if (taps is not None) and (len(taps) > 0):
            self._taps = taps
        else:
            # Create a filter that covers the full bandwidth of the input signal
            bw = 0.4
            tb = 0.2
            ripple = 0.1
            made = False
            while not made:
                try:
                    self._taps = optfir.low_pass(1, self._nchans, bw, bw+tb, ripple, atten)
                    made = True
                except RuntimeError:
                    ripple += 0.01
                    made = False
                    print("Warning: set ripple to %.4f dB. If this is a problem, adjust the attenuation or create your own filter taps." % (ripple))

                    # Build in an exit strategy; if we've come this far, it ain't working.
                    if(ripple >= 1.0):
                        raise RuntimeError("optfir could not generate an appropriate filter.")

        self.s2ss = blocks.stream_to_streams(gr.sizeof_gr_complex, self._nchans)
        self.pfb = filter.pfb_channelizer_ccf(self._nchans, self._taps,
                                              self._oversample_rate)
        self.connect(self, self.s2ss)

        for i in xrange(self._nchans):
            self.connect((self.s2ss,i), (self.pfb,i))
            self.connect((self.pfb,i), (self,i))
コード例 #3
0
    def test_000(self):
        N = 1000  # number of samples to use
        M = 5  # Number of channels to channelize
        fs = 1000  # baseband sampling rate
        ifs = M * fs  # input samp rate to channelizer

        taps = filter.firdes.low_pass_2(
            1,
            ifs,
            500,
            50,
            attenuation_dB=80,
            window=filter.firdes.WIN_BLACKMAN_hARRIS)

        signals = list()
        add = gr.add_cc()
        freqs = [-200, -100, 0, 100, 200]
        for i in xrange(len(freqs)):
            f = freqs[i] + (M / 2 - M + i + 1) * fs
            signals.append(gr.sig_source_c(ifs, gr.GR_SIN_WAVE, f, 1))
            self.tb.connect(signals[i], (add, i))

        head = gr.head(gr.sizeof_gr_complex, N)
        s2ss = gr.stream_to_streams(gr.sizeof_gr_complex, M)
        pfb = filter.pfb_channelizer_ccf(M, taps, 1)

        self.tb.connect(add, head, s2ss)

        snks = list()
        for i in xrange(M):
            snks.append(gr.vector_sink_c())
            self.tb.connect((s2ss, i), (pfb, i))
            self.tb.connect((pfb, i), snks[i])

        self.tb.run()

        Ntest = 50
        L = len(snks[0].data())
        t = map(lambda x: float(x) / fs, xrange(L))

        # Adjusted phase rotations for data
        p0 = 0
        p1 = math.pi * 0.51998885
        p2 = -math.pi * 0.96002233
        p3 = math.pi * 0.96002233
        p4 = -math.pi * 0.51998885

        # Create known data as complex sinusoids at the different baseband freqs
        # the different channel numbering is due to channelizer output order.
        expected0_data = map(lambda x: math.cos(2.*math.pi*freqs[2]*x+p0) + \
                                       1j*math.sin(2.*math.pi*freqs[2]*x+p0), t)
        expected1_data = map(lambda x: math.cos(2.*math.pi*freqs[3]*x+p1) + \
                                       1j*math.sin(2.*math.pi*freqs[3]*x+p1), t)
        expected2_data = map(lambda x: math.cos(2.*math.pi*freqs[4]*x+p2) + \
                                       1j*math.sin(2.*math.pi*freqs[4]*x+p2), t)
        expected3_data = map(lambda x: math.cos(2.*math.pi*freqs[0]*x+p3) + \
                                       1j*math.sin(2.*math.pi*freqs[0]*x+p3), t)
        expected4_data = map(lambda x: math.cos(2.*math.pi*freqs[1]*x+p4) + \
                                       1j*math.sin(2.*math.pi*freqs[1]*x+p4), t)

        dst0_data = snks[0].data()
        dst1_data = snks[1].data()
        dst2_data = snks[2].data()
        dst3_data = snks[3].data()
        dst4_data = snks[4].data()

        self.assertComplexTuplesAlmostEqual(expected0_data[-Ntest:],
                                            dst0_data[-Ntest:], 3)
        self.assertComplexTuplesAlmostEqual(expected1_data[-Ntest:],
                                            dst1_data[-Ntest:], 3)
        self.assertComplexTuplesAlmostEqual(expected2_data[-Ntest:],
                                            dst2_data[-Ntest:], 3)
        self.assertComplexTuplesAlmostEqual(expected3_data[-Ntest:],
                                            dst3_data[-Ntest:], 3)
        self.assertComplexTuplesAlmostEqual(expected4_data[-Ntest:],
                                            dst4_data[-Ntest:], 3)
コード例 #4
0
    def test_000(self):
        N = 1000         # number of samples to use
        M = 5            # Number of channels to channelize
        fs = 1000        # baseband sampling rate
        ifs = M*fs       # input samp rate to channelizer

        taps = filter.firdes.low_pass_2(1, ifs, 500, 50,
                                        attenuation_dB=80,
                                        window=filter.firdes.WIN_BLACKMAN_hARRIS)

        signals = list()
        add = blocks.add_cc()
        freqs = [-200, -100, 0, 100, 200]
        for i in xrange(len(freqs)):
            f = freqs[i] + (M/2-M+i+1)*fs
            data = sig_source_c(ifs, f, 1, N)
            signals.append(blocks.vector_source_c(data))
            self.tb.connect(signals[i], (add,i))

        s2ss = blocks.stream_to_streams(gr.sizeof_gr_complex, M)
        pfb = filter.pfb_channelizer_ccf(M, taps, 1)

        self.tb.connect(add, s2ss)

        snks = list()
        for i in xrange(M):
            snks.append(blocks.vector_sink_c())
            self.tb.connect((s2ss,i), (pfb,i))
            self.tb.connect((pfb, i), snks[i])

        self.tb.run() 

        Ntest = 50
        L = len(snks[0].data())
        t = map(lambda x: float(x)/fs, xrange(L))

        # Adjusted phase rotations for data
        p0 = 0
        p1 =  math.pi*0.51998885
        p2 = -math.pi*0.96002233
        p3 =  math.pi*0.96002233
        p4 = -math.pi*0.51998885

        # Create known data as complex sinusoids at the different baseband freqs
        # the different channel numbering is due to channelizer output order.
        expected0_data = map(lambda x: math.cos(2.*math.pi*freqs[2]*x+p0) + \
                                       1j*math.sin(2.*math.pi*freqs[2]*x+p0), t)
        expected1_data = map(lambda x: math.cos(2.*math.pi*freqs[3]*x+p1) + \
                                       1j*math.sin(2.*math.pi*freqs[3]*x+p1), t)
        expected2_data = map(lambda x: math.cos(2.*math.pi*freqs[4]*x+p2) + \
                                       1j*math.sin(2.*math.pi*freqs[4]*x+p2), t)
        expected3_data = map(lambda x: math.cos(2.*math.pi*freqs[0]*x+p3) + \
                                       1j*math.sin(2.*math.pi*freqs[0]*x+p3), t)
        expected4_data = map(lambda x: math.cos(2.*math.pi*freqs[1]*x+p4) + \
                                       1j*math.sin(2.*math.pi*freqs[1]*x+p4), t)

        dst0_data = snks[0].data()
        dst1_data = snks[1].data()
        dst2_data = snks[2].data()
        dst3_data = snks[3].data()
        dst4_data = snks[4].data()

        self.assertComplexTuplesAlmostEqual(expected0_data[-Ntest:], dst0_data[-Ntest:], 3)
        self.assertComplexTuplesAlmostEqual(expected1_data[-Ntest:], dst1_data[-Ntest:], 3)
        self.assertComplexTuplesAlmostEqual(expected2_data[-Ntest:], dst2_data[-Ntest:], 3)
        self.assertComplexTuplesAlmostEqual(expected3_data[-Ntest:], dst3_data[-Ntest:], 3)
        self.assertComplexTuplesAlmostEqual(expected4_data[-Ntest:], dst4_data[-Ntest:], 3)