コード例 #1
0
def ball_filter4(dt,R=1., Q = 0.1):
    f1 = KalmanFilter(dim=4)
    g = 10

    f1.F = np.mat ([[1., dt,  0, 0,],
                    [0,  1.,  0, 0],
                    [0,  0,  1., dt],
                    [0,  0,  0.,  1.]])

    f1.H = np.mat([[1,0,0,0],
                   [0,0,0,0],
                   [0,0,1,0],
                   [0,0,0,0]])



    f1.B = np.mat([[0,0,0,0],
                   [0,0,0,0],
                   [0,0,1.,0],
                   [0,0,0,1.]])

    f1.u = np.mat([[0],
                   [0],
                   [-0.5*g*dt**2],
                   [-g*dt]])

    f1.R = np.mat(np.eye(4)) * R

    f1.Q = np.zeros((4,4))
    f1.Q[1,1] = Q
    f1.Q[3,3] = Q
    f1.x = np.mat([0, 0 , 0, 0]).T
    f1.P = np.eye(4) * 50.
    return f1
コード例 #2
0
def tracker1():
    #
    #
    # Design 2D filter
    #
    #
    
    # 1. Choose state vars - x
    
    # 2. Design state trans. Function - F
    tracker = KalmanFilter(dim_x=4, dim_z=2)
    dt = 1.
    # time step 1 second
    tracker.F = np.array([[1, dt, 0, 0],
                            [0, 1, 0, 0],
                            [0, 0, 1, dt],
                            [0, 0, 0, 1]])
                            
    # 3. Design Process Noise Mat - Q
    v = 0.05
    q = Q_discrete_white_noise(dim=2, dt=dt, var=v)
    tracker.Q = block_diag(q, q)

    # 4. B
    # 5. Design measurement function
    tracker.H = np.array([[1/0.3048, 0, 0, 0],
                          [0, 0, 1/0.3048, 0]])
                          
    # 6. Design Meas. Noise Mat - R
    tracker.R = np.array([[5, 0],[0, 5]])
    
    # Init conditions
    tracker.x = np.array([[0, 0, 0, 0]]).T
    tracker.P = np.eye(4) * 500.
    return tracker
コード例 #3
0
ファイル: client.py プロジェクト: ZhouYzzz/CTT
 def _KF_init(self): # para: Center of box used for prediction
     KF = KalmanFilter(4,2)
     # KF.x = location + [0,0,0,0]
     # KF.F = np.array([
     #     [1,0,0,0,1,0,0,0],
     #     [0,1,0,0,0,1,0,0],
     #     [0,0,1,0,0,0,1,0],
     #     [0,0,0,1,0,0,0,1],
     #     [0,0,0,0,1,0,0,0],
     #     [0,0,0,0,0,1,0,0],
     #     [0,0,0,0,0,0,1,0],
     #     [0,0,0,0,0,0,0,1]])
     # KF.H = np.array([
     #     [1,0,0,0,0,0,0,0],
     #     [0,1,0,0,0,0,0,0],
     #     [0,0,1,0,0,0,0,0],
     #     [0,0,0,1,0,0,0,0]])
     KF.x = self.KF_center + [0,0] # can be improved for accuracy e.g. from which edge
     KF.F = np.array([
         [1,0,1,0],
         [0,1,0,1],
         [0,0,1,0],
         [0,0,0,1]])
     KF.H = np.array([
         [1,0,0,0],
         [0,1,0,0]])
     KF.P *= 100
     KF.R *= 100
     # KF.Q *= 2
     # KF.predict()
     return KF
コード例 #4
0
def ball_filter6(dt,R=1., Q = 0.1):
    f1 = KalmanFilter(dim=6)
    g = 10

    f1.F = np.mat ([[1., dt, dt**2,  0,       0,  0],
                    [0,  1., dt,     0,       0,  0],
                    [0,  0,  1.,     0,       0,  0],
                    [0,  0,  0.,    1., dt, -0.5*dt*dt*g],
                    [0,  0,  0,      0, 1.,      -g*dt],
                    [0,  0,  0,      0, 0.,      1.]])

    f1.H = np.mat([[1,0,0,0,0,0],
                   [0,0,0,0,0,0],
                   [0,0,0,0,0,0],
                   [0,0,0,1,0,0],
                   [0,0,0,0,0,0],
                   [0,0,0,0,0,0]])


    f1.R = np.mat(np.eye(6)) * R

    f1.Q = np.zeros((6,6))
    f1.Q[2,2] = Q
    f1.Q[5,5] = Q
    f1.x = np.mat([0, 0 , 0, 0, 0, 0]).T
    f1.P = np.eye(6) * 50.
    f1.B = 0.
    f1.u = 0

    return f1
コード例 #5
0
ファイル: track.py プロジェクト: hewr1993/graduate_thesis
 def create_kalman_filter(self, det):
     """(x, y, s(area), r(aspect ratio), x', y', s')
     """
     model = KalmanFilter(dim_x=7, dim_z=4)
     model.F = np.array([
         [1, 0, 0, 0, 1, 0, 0],
         [0, 1, 0, 0, 0, 1, 0],
         [0, 0, 1, 0, 0, 0, 1],
         [0, 0, 0, 1, 0, 0, 0],
         [0, 0, 0, 0, 1, 0, 0],
         [0, 0, 0, 0, 0, 1, 0],
         [0, 0, 0, 0, 0, 0, 1],
     ], 'float32')
     model.H = np.array([
         [1, 0, 0, 0, 0, 0, 0],
         [0, 1, 0, 0, 0, 0, 0],
         [0, 0, 1, 0, 0, 0, 0],
         [0, 0, 0, 1, 0, 0, 0],
     ], 'float32')
     model.R[2:,2:] *= 10.
     model.P[4:,4:] *= 1000.  # high uncertainty of initial volocity
     model.P *= 10.
     model.Q[-1,-1] *= 0.01
     model.Q[4:,4:] *= 0.01
     model.x[:4] = np.array(xywh_to_xysr(*det), 'float32').reshape(4, 1)
     return model
コード例 #6
0
ファイル: test_rts.py プロジェクト: poeticcapybara/filterpy
def test_rts():
    fk = KalmanFilter(dim_x=2, dim_z=1)

    fk.x = np.array([-1., 1.])    # initial state (location and velocity)

    fk.F = np.array([[1.,1.],
                     [0.,1.]])      # state transition matrix

    fk.H = np.array([[1.,0.]])      # Measurement function
    fk.P = .01                     # covariance matrix
    fk.R = 5                       # state uncertainty
    fk.Q = 0.001                   # process uncertainty


    zs = [t + random.randn()*4 for t in range(40)]

    mu, cov, _, _ = fk.batch_filter (zs)
    mus = [x[0] for x in mu]

    M, P, _, _ = fk.rts_smoother(mu, cov)

    if DO_PLOT:
        p1, = plt.plot(zs,'cyan', alpha=0.5)
        p2, = plt.plot(M[:,0],c='b')
        p3, = plt.plot(mus,c='r')
        p4, = plt.plot([0, len(zs)], [0, len(zs)], 'g') # perfect result
        plt.legend([p1, p2, p3, p4],
                   ["measurement", "RKS", "KF output", "ideal"], loc=4)

        plt.show()
コード例 #7
0
def template():
    kf = KalmanFilter(dim_x=2, dim_z=1)
    
    # x0 
    kf.x = np.array([[.0], [.0]])
        
    # P - change over time
    kf.P = np.diag([500., 49.])
    
    # F - state transition matrix
    dt = .1
    kf.F = np.array([[1, dt], [0, 1]])
    
    ## now can predict
    ## дисперсия растет и становится видна корреляция
    #plot_covariance_ellipse(kf.x, kf.P, edgecolor='r')
    #kf.predict()
    #plot_covariance_ellipse(kf.x, kf.P, edgecolor='k', ls='dashed')
    #show()
    
    # Control information
    kf.B = 0
    
    # !!Attention!! Q! Process noise
    kf.Q = Q_discrete_white_noise( dim=2, dt=dt, var=2.35)
    
    # H - measurement function
    kf.H = np.array([[1., 0.]])
    
    # R - measure noise matrix
    kf.R = np.array([[5.]])
コード例 #8
0
ファイル: track_ped_csv.py プロジェクト: vbillys/track_ped
def createLegKF(x, y):
    # kalman_filter = KalmanFilter(dim_x=4, dim_z=2)
    kalman_filter = KalmanFilter(dim_x=4, dim_z=4)
    dt = 0.1
    KF_F = np.array([[1.0, dt, 0, 0], [0, 1.0, 0, 0], [0, 0, 1.0, dt], [0, 0, 0, 1.0]])
    KF_q = 0.7  # 0.3
    KF_Q = np.vstack(
        (
            np.hstack((Q_discrete_white_noise(2, dt=0.1, var=KF_q), np.zeros((2, 2)))),
            np.hstack((np.zeros((2, 2)), Q_discrete_white_noise(2, dt=0.1, var=KF_q))),
        )
    )
    KF_pd = 25.0
    KF_pv = 10.0
    KF_P = np.diag([KF_pd, KF_pv, KF_pd, KF_pv])
    KF_rd = 0.05
    KF_rv = 0.2  # 0.5
    # KF_R = np.diag([KF_rd,KF_rd])
    KF_R = np.diag([KF_rd, KF_rd, KF_rv, KF_rv])
    # KF_H = np.array([[1.,0,0,0],[0,0,1.,0]])
    KF_H = np.array([[1.0, 0, 0, 0], [0, 0, 1.0, 0], [0, 1.0, 0, 0], [0, 0, 0, 1.0]])

    kalman_filter.x = np.array([x, 0, y, 0])
    kalman_filter.F = KF_F
    kalman_filter.H = KF_H
    kalman_filter.Q = KF_Q
    kalman_filter.B = 0
    kalman_filter.R = KF_R
    kalman_filter.P = KF_P

    return kalman_filter
コード例 #9
0
ファイル: test_ukf.py プロジェクト: Censio/filterpy
def kf_circle():
    from filterpy.kalman import KalmanFilter
    from math import radians
    import math
    def hx(x):
        radius = x[0]
        angle = x[1]
        x = cos(radians(angle)) * radius
        y = sin(radians(angle)) * radius
        return np.array([x, y])

    def fx(x, dt):
        return np.array([x[0], x[1]+x[2], x[2]])


    def hx_inv(x, y):
        angle = math.atan2(y,x)
        radius = math.sqrt(x*x + y*y)
        return np.array([radius, angle])


    std_noise = .1


    kf = KalmanFilter(dim_x=3, dim_z=2)
    kf.x = np.array([50., 0., 0.])

    F = np.array([[1., 0, 0.],
                  [0., 1., 1.,],
                  [0., 0., 1.,]])

    kf.F = F
    kf.P*= 100
    kf.H = np.array([[1,0,0],
                     [0,1,0]])

    kf.R = np.eye(2)*(std_noise**2)
    #kf.Q[0:3, 0:3] = Q_discrete_white_noise(3, 1., .00001)



    zs = []
    kfxs = []
    for t in range (0,2000):
        a = t / 30 + 90
        x = cos(radians(a)) * 50.+ randn() * std_noise
        y = sin(radians(a)) * 50. + randn() * std_noise

        z = hx_inv(x,y)
        zs.append(z)

        kf.predict()
        kf.update(z)

        # save data
        kfxs.append(kf.x)

    zs = np.asarray(zs)
    kfxs = np.asarray(kfxs)
コード例 #10
0
ファイル: test_sqrtkf.py プロジェクト: Censio/filterpy
def test_noisy_1d():
    f = KalmanFilter(dim_x=2, dim_z=1)

    f.x = np.array([[2.0], [0.0]])  # initial state (location and velocity)

    f.F = np.array([[1.0, 1.0], [0.0, 1.0]])  # state transition matrix

    f.H = np.array([[1.0, 0.0]])  # Measurement function
    f.P *= 1000.0  # covariance matrix
    f.R = 5  # state uncertainty
    f.Q = 0.0001  # process uncertainty

    fsq = SquareRootKalmanFilter(dim_x=2, dim_z=1)

    fsq.x = np.array([[2.0], [0.0]])  # initial state (location and velocity)

    fsq.F = np.array([[1.0, 1.0], [0.0, 1.0]])  # state transition matrix

    fsq.H = np.array([[1.0, 0.0]])  # Measurement function
    fsq.P = np.eye(2) * 1000.0  # covariance matrix
    fsq.R = 5  # state uncertainty
    fsq.Q = 0.0001  # process uncertainty

    measurements = []
    results = []

    zs = []
    for t in range(100):
        # create measurement = t plus white noise
        z = t + random.randn() * 20
        zs.append(z)

        # perform kalman filtering
        f.update(z)
        f.predict()

        fsq.update(z)
        fsq.predict()

        assert abs(f.x[0, 0] - fsq.x[0, 0]) < 1.0e-12
        assert abs(f.x[1, 0] - fsq.x[1, 0]) < 1.0e-12

        # save data
        results.append(f.x[0, 0])
        measurements.append(z)

    p = f.P - fsq.P
    print(f.P)
    print(fsq.P)

    for i in range(f.P.shape[0]):
        assert abs(f.P[i, i] - fsq.P[i, i]) < 0.01

    # now do a batch run with the stored z values so we can test that
    # it is working the same as the recursive implementation.
    # give slightly different P so result is slightly different
    f.x = np.array([[2.0, 0]]).T
    f.P = np.eye(2) * 100.0
    m, c, _, _ = f.batch_filter(zs, update_first=False)
コード例 #11
0
def sensor_fusion_test(wheel_sigma=2., gps_sigma=4.):
    dt = 0.1

    kf2 = KalmanFilter(dim_x=2, dim_z=2)

    kf2.F = array ([[1., dt], [0., 1.]])
    kf2.H = array ([[1., 0.], [1., 0.]])
    kf2.x = array ([[0.], [0.]])
    kf2.Q = array ([[dt**3/3, dt**2/2],
                    [dt**2/2, dt]]) * 0.02
    kf2.P *= 100
    kf2.R[0,0] = wheel_sigma**2
    kf2.R[1,1] = gps_sigma**2


    random.seed(SEED)
    xs = []
    zs = []
    nom = []
    for i in range(1, 100):
        m0 = i + randn()*wheel_sigma
        m1 = i + randn()*gps_sigma
        if gps_sigma >1e40:
            m1 = -1e40

        z = array([[m0], [m1]])

        kf2.predict()
        kf2.update(z)

        xs.append(kf2.x.T[0])
        zs.append(z.T[0])
        nom.append(i)

    xs = asarray(xs)
    zs = asarray(zs)
    nom = asarray(nom)


    res = nom-xs[:,0]
    std_dev = np.std(res)
    print('fusion std: {:.3f}'.format (np.std(res)))

    if DO_PLOT:

        plt.subplot(211)
        plt.plot(xs[:,0])
        #plt.plot(zs[:,0])
        #plt.plot(zs[:,1])

        plt.subplot(212)
        plt.axhline(0)
        plt.plot(res)
        plt.show()

    print(kf2.Q)
    print(kf2.K)
    return std_dev
コード例 #12
0
def test_1d_0P():
    global inf
    f = KalmanFilter (dim_x=2, dim_z=1)
    inf = InformationFilter (dim_x=2, dim_z=1)

    f.x = np.array([[2.],
                    [0.]])       # initial state (location and velocity)

    f.F = (np.array([[1., 1.],
                     [0., 1.]]))    # state transition matrix

    f.H = np.array([[1., 0.]])    # Measurement function
    f.R = np.array([[5.]])                 # state uncertainty
    f.Q = np.eye(2)*0.0001                 # process uncertainty
    f.P = np.diag([20., 20.])

    inf.x = f.x.copy()
    inf.F = f.F.copy()
    inf.H = np.array([[1.,0.]])    # Measurement function
    inf.R_inv *= 1./5                 # state uncertainty
    inf.Q = np.eye(2)*0.0001
    inf.P_inv = 0.000000000000000000001
    #inf.P_inv = inv(f.P)

    m = []
    r = []
    r2 = []


    zs = []
    for t in range (50):
        # create measurement = t plus white noise
        z = t + random.randn()* np.sqrt(5)
        zs.append(z)

        # perform kalman filtering
        f.predict()
        f.update(z)

        inf.predict()
        inf.update(z)

        try:
            print(t, inf.P)
        except:
            pass

        # save data
        r.append (f.x[0,0])
        r2.append (inf.x[0,0])
        m.append(z)

    #assert np.allclose(f.x, inf.x), f'{t}: {f.x.T} {inf.x.T}'

    if DO_PLOT:
        plt.plot(m)
        plt.plot(r)
        plt.plot(r2)
def dog_tracking_filter(R,Q=0,cov=1.):
    f = KalmanFilter (dim_x=2, dim_z=1)
    f.x = np.matrix([[0], [0]])    # initial state (location and velocity)
    f.F = np.matrix([[1,1],[0,1]]) # state transition matrix
    f.H = np.matrix([[1,0]])       # Measurement function
    f.R = R                        # measurement uncertainty
    f.P *= cov                     # covariance matrix
    f.Q = Q
    return f
コード例 #14
0
ファイル: test_kf.py プロジェクト: poeticcapybara/filterpy
def test_noisy_1d():
    f = KalmanFilter(dim_x=2, dim_z=1)

    f.x = np.array([[2.],
                    [0.]])       # initial state (location and velocity)

    f.F = np.array([[1., 1.],
                    [0., 1.]])    # state transition matrix

    f.H = np.array([[1., 0.]])    # Measurement function
    f.P *= 1000.                  # covariance matrix
    f.R = 5                       # state uncertainty
    f.Q = 0.0001                  # process uncertainty

    measurements = []
    results = []

    zs = []
    for t in range(100):
        # create measurement = t plus white noise
        z = t + random.randn()*20
        zs.append(z)

        # perform kalman filtering
        f.update(z)
        f.predict()

        # save data
        results.append(f.x[0, 0])
        measurements.append(z)

        # test mahalanobis
        a = np.zeros(f.y.shape)
        maha = scipy_mahalanobis(a, f.y, f.SI)
        assert f.mahalanobis == approx(maha)


    # now do a batch run with the stored z values so we can test that
    # it is working the same as the recursive implementation.
    # give slightly different P so result is slightly different
    f.x = np.array([[2., 0]]).T
    f.P = np.eye(2) * 100.
    s = Saver(f)
    m, c, _, _ = f.batch_filter(zs, update_first=False, saver=s)
    s.to_array()
    assert len(s.x) == len(zs)
    assert len(s.x) == len(s)

    # plot data
    if DO_PLOT:
        p1, = plt.plot(measurements, 'r', alpha=0.5)
        p2, = plt.plot(results, 'b')
        p4, = plt.plot(m[:, 0], 'm')
        p3, = plt.plot([0, 100], [0, 100], 'g')  # perfect result
        plt.legend([p1, p2, p3, p4],
                   ["noisy measurement", "KF output", "ideal", "batch"], loc=4)
        plt.show()
コード例 #15
0
def test_against_kf():
    inv = np.linalg.inv

    dt = 1.0
    IM = np.eye(2)
    Q = np.array([[.25, 0.5], [0.5, 1]])

    F = np.array([[1, dt], [0, 1]])
    #QI = inv(Q)
    P = inv(IM)


    from filterpy.kalman import InformationFilter
    from filterpy.common import Q_discrete_white_noise

    #f = IF2(2, 1)
    r_std = .2
    R = np.array([[r_std*r_std]])
    RI = inv(R)

    '''f.F = F.copy()
    f.H = np.array([[1, 0.]])
    f.RI = RI.copy()
    f.Q = Q.copy()
    f.IM = IM.copy()'''


    kf = KalmanFilter(2, 1)
    kf.F = F.copy()
    kf.H = np.array([[1, 0.]])
    kf.R = R.copy()
    kf.Q = Q.copy()

    f0 = InformationFilter(2, 1)
    f0.F = F.copy()
    f0.H = np.array([[1, 0.]])
    f0.R_inv = RI.copy()
    f0.Q = Q.copy()



    #f.IM = np.zeros((2,2))


    for i in range(1, 50):
        z = i + (np.random.rand() * r_std)
        f0.predict()
        #f.predict()
        kf.predict()


        f0.update(z)
        #f.update(z)
        kf.update(z)

        print(f0.x.T, kf.x.T)
        assert np.allclose(f0.x, kf.x)
コード例 #16
0
ファイル: test_fls.py プロジェクト: BrianGasberg/filterpy
def one_run_test_fls():
    fls = FixedLagSmoother(dim_x=2, dim_z=1)

    fls.x = np.array([0., .5])
    fls.F = np.array([[1.,1.],
                      [0.,1.]])

    fls.H = np.array([[1.,0.]])
    fls.P *= 200
    fls.R *= 5.
    fls.Q *= 0.001

    kf = KalmanFilter(dim_x=2, dim_z=1)

    kf.x = np.array([0., .5])
    kf.F = np.array([[1.,1.],
                     [0.,1.]])
    kf.H = np.array([[1.,0.]])
    kf.P *= 2000
    kf.R *= 1.
    kf.Q *= 0.001

    N = 4 # size of lag

    nom =  np.array([t/2. for t in range (0,40)])
    zs = np.array([t + random.randn()*1.1 for t in nom])

    xs, x = fls.smooth_batch(zs, N)

    M, P, *_ = kf.batch_filter(zs)
    rts_x, *_ = kf.rts_smoother(M, P)

    xfl = xs[:,0].T[0]
    xkf = M[:,0].T[0]

    fl_res = abs(xfl-nom)
    kf_res = abs(xkf-nom)

    if DO_PLOT:
        plt.cla()
        plt.plot(zs,'o', alpha=0.5, marker='o', label='zs')
        plt.plot(x[:,0], label='FLS')
        plt.plot(xfl, label='FLS S')
        plt.plot(xkf, label='KF')
        plt.plot(rts_x[:,0], label='RTS')
        plt.legend(loc=4)
        plt.show()


        print(fl_res)
        print(kf_res)

        print('std fixed lag:', np.mean(fl_res[N:]))
        print('std kalman:', np.mean(kf_res[N:]))

    return np.mean(fl_res) <= np.mean(kf_res)
コード例 #17
0
ファイル: test_mmae.py プロジェクト: poeticcapybara/filterpy
def make_cv_filter(dt, noise_factor):
    cvfilter = KalmanFilter(dim_x = 2, dim_z=1)
    cvfilter.x = array([0., 0.])
    cvfilter.P *= 3
    cvfilter.R *= noise_factor**2
    cvfilter.F = array([[1, dt],
                        [0,  1]], dtype=float)
    cvfilter.H = array([[1, 0]], dtype=float)
    cvfilter.Q = Q_discrete_white_noise(dim=2, dt=dt, var=0.02)
    return cvfilter
コード例 #18
0
ファイル: CustomTasks.py プロジェクト: xy008areshsu/AdaFT
def makeLinearKF(A, B, C, P, F, x, R = None, dim_x = 4, dim_z = 4):

    kf = KalmanFilter(dim_x=dim_x, dim_z=dim_z)
    kf.x = x
    kf.P = P
    kf.F = F
    kf.H = C
    kf.R = R

    return kf
コード例 #19
0
def test_1d():
    global inf
    f = KalmanFilter(dim_x=2, dim_z=1)
    inf = InformationFilter(dim_x=2, dim_z=1)

    # ensure __repr__ doesn't assert
    str(inf)


    f.x = np.array([[2.],
                    [0.]])       # initial state (location and velocity)

    inf.x = f.x.copy()
    f.F = (np.array([[1.,1.],
                     [0.,1.]]))    # state transition matrix

    inf.F = f.F.copy()
    f.H = np.array([[1.,0.]])      # Measurement function
    inf.H = np.array([[1.,0.]])    # Measurement function
    f.R *= 5                       # state uncertainty
    inf.R_inv *= 1./5               # state uncertainty
    f.Q *= 0.0001                  # process uncertainty
    inf.Q *= 0.0001


    m = []
    r = []
    r2 = []
    zs = []
    s = Saver(inf)
    for t in range (100):
        # create measurement = t plus white noise
        z = t + random.randn()*20
        zs.append(z)

        # perform kalman filtering
        f.update(z)
        f.predict()

        inf.update(z)
        inf.predict()

        # save data
        r.append (f.x[0,0])
        r2.append (inf.x[0,0])
        m.append(z)
        print(inf.y)
        s.save()

        assert abs(f.x[0,0] - inf.x[0,0]) < 1.e-12

    if DO_PLOT:
        plt.plot(m)
        plt.plot(r)
        plt.plot(r2)
コード例 #20
0
 def ZeroOrderKF(R, Q, P=20):
     """ Create zero order Kalman filter.
     Specify R and Q as floats."""
     kf = KalmanFilter(dim_x=1, dim_z=1)
     kf.x = np.array([0.])
     kf.R *= R
     kf.Q *= Q
     kf.P *= P
     kf.F = np.eye(1)
     kf.H = np.eye(1)
     return kf
コード例 #21
0
ファイル: test_mmae.py プロジェクト: poeticcapybara/filterpy
def make_ca_filter(dt, noise_factor):
    cafilter = KalmanFilter(dim_x=3, dim_z=1)
    cafilter.x = array([0., 0., 0.])
    cafilter.P *= 3
    cafilter.R *= noise_factor**2
    cafilter.Q = Q_discrete_white_noise(dim=3, dt=dt, var=0.02)
    cafilter.F = array([[1, dt, 0.5*dt*dt],
                        [0, 1,         dt],
                        [0, 0,          1]], dtype=float)
    cafilter.H = array([[1, 0, 0]], dtype=float)
    return cafilter
コード例 #22
0
def rot_box_kalman_filter(initial_state, Q_std, R_std):
    """
    Tracks a 2D rectangular object (e.g. a bounding box) whose state includes
    position, centroid velocity, dimensions, and rotation angle.

    Parameters
    ----------
    initial_state : sequence of floats
        [x, vx, y, vy, w, h, phi]
    Q_std : float
        Standard deviation to use for process noise covariance matrix
    R_std : float
        Standard deviation to use for measurement noise covariance matrix

    Returns
    -------
    kf : filterpy.kalman.KalmanFilter instance
    """
    kf = KalmanFilter(dim_x=7, dim_z=5)
    dt = 1.0   # time step

    # state mean and covariance
    kf.x = np.array([initial_state]).T
    kf.P = np.eye(kf.dim_x) * 500.

    # no control inputs
    kf.u = 0.

    # state transition matrix
    kf.F = np.eye(kf.dim_x)
    kf.F[0, 1] = kf.F[2, 3] = dt

    # measurement matrix - maps from state space to observation space, so
    # shape is dim_z x dim_x.
    kf.H = np.zeros([kf.dim_z, kf.dim_x])

    # z = Hx. H has nonzero coefficients for the following components of kf.x:
    #   x            y            w            h           phi
    kf.H[0, 0] = kf.H[1, 2] = kf.H[2, 4] = kf.H[3, 5] = kf.H[4, 6] = 1.0

    # measurement noise covariance
    kf.R = np.eye(kf.dim_z) * R_std**2

    # process noise covariance for x-vx or y-vy pairs
    q = Q_discrete_white_noise(dim=2, dt=dt, var=Q_std**2)

    # diagonal process noise sub-matrix for width, height, and phi
    qq = Q_std**2*np.eye(3)

    # process noise covariance matrix for full state
    kf.Q = block_diag(q, q, qq)

    return kf
コード例 #23
0
 def FirstOrderKF(R, Q, dt):
     """ Create first order Kalman filter.
     Specify R and Q as floats."""
     kf = KalmanFilter(dim_x=2, dim_z=1)
     kf.x = np.zeros(2)
     kf.P *= np.array([[100, 0], [0, 1]])
     kf.R *= R
     kf.Q = Q_discrete_white_noise(2, dt, Q)
     kf.F = np.array([[1., dt],
     [0., 1]])
     kf.H = np.array([[1., 0]])
     return kf
コード例 #24
0
def test_1d_0P():
    f = KalmanFilter (dim_x=2, dim_z=1)
    inf = InformationFilter (dim_x=2, dim_z=1)

    f.x = np.array([[2.],
                    [0.]])       # initial state (location and velocity)

    f.F = (np.array([[1.,1.],
                     [0.,1.]]))    # state transition matrix

    f.H = np.array([[1.,0.]])    # Measurement function
    f.R = np.array([[5.]])                 # state uncertainty
    f.Q = np.eye(2)*0.0001                 # process uncertainty
    f.P = np.diag([20., 20.])

    inf.x = f.x.copy()
    inf.F = f.F.copy()
    inf.H = np.array([[1.,0.]])    # Measurement function
    inf.R_inv *= 1./5                 # state uncertainty
    inf.Q *= 0.0001
    inf.P_inv = 0
    #inf.P_inv = inv(f.P)

    m = []
    r = []
    r2 = []


    zs = []
    for t in range (100):
        # create measurement = t plus white noise
        z = t + random.randn()*20
        zs.append(z)

        # perform kalman filtering
        f.predict()
        f.update(z)

        inf.predict()
        inf.update(z)

        # save data
        r.append (f.x[0,0])
        r2.append (inf.x[0,0])
        m.append(z)

        #assert abs(f.x[0,0] - inf.x[0,0]) < 1.e-12

    if DO_PLOT:
        plt.plot(m)
        plt.plot(r)
        plt.plot(r2)
コード例 #25
0
def test_1d_0P():
    f = KalmanFilter (dim_x=2, dim_z=1)
    inf = InformationFilter (dim_x=2, dim_z=1)

    f.x = np.array([[2.],
                    [0.]])       # initial state (location and velocity)

    f.F = (np.array([[1.,1.],
                     [0.,1.]]))    # state transition matrix

    f.H = np.array([[1.,0.]])    # Measurement function
    f.R = np.array([[5.]])                 # state uncertainty
    f.Q = np.eye(2)*0.0001                 # process uncertainty
    f.P = np.diag([20., 20.])

    inf.x = f.x.copy()
    inf.F = f.F.copy()
    inf.H = np.array([[1.,0.]])    # Measurement function
    inf.R_inv *= 1./5                 # state uncertainty
    inf.Q *= 0.0001
    inf.P_inv = 0
    #inf.P_inv = inv(f.P)

    m = []
    r = []
    r2 = []


    zs = []
    for t in range (100):
        # create measurement = t plus white noise
        z = t + random.randn()*20
        zs.append(z)

        # perform kalman filtering
        f.predict()
        f.update(z)

        inf.predict()
        inf.update(z)

        # save data
        r.append (f.x[0,0])
        r2.append (inf.x[0,0])
        m.append(z)

        #assert abs(f.x[0,0] - inf.x[0,0]) < 1.e-12

    if DO_PLOT:
        plt.plot(m)
        plt.plot(r)
        plt.plot(r2)
コード例 #26
0
def kf(s, r, q):
    '''Perform Kalman Filter on pandas Series
    
    Inputs:
        s -- Pandas series with data to filter, index is datetime
        r -- measurement noise variance (use 10*quiet_period_variance)
        q -- process noise variance (use 20)
    
    Returns:
        f -- Kalman Filter model
    '''

    estimate_columns = ['z', 'x', 'dx', 'r', 'v11', 'v21', 'v12', 'v22']
    estimate_df = pd.DataFrame(index=s.index, columns=estimate_columns)
    estimate_df = estimate_df.fillna(0)

    # NCV model
    f = KalmanFilter(dim_x=2, dim_z=1)
    # Initial condition
    f.x = np.array([s[0], s.diff()[1:5].mean()])

    # State transition matrix
    f.F = np.array([[
        1.,
        1.,
    ], [
        0,
        1.,
    ]])

    # Measurement Function
    f.H = np.array([[1., 0]])

    # Covariance Matrix
    f.P *= 1

    # Measurement Noise Covariance
    f.R = r

    # Add noise profile
    f.Q = Q_discrete_white_noise(dim=2, dt=1, var=q)
    for k in range(0, len(estimate_df)):
        z = s[k]
        f.predict()
        f.update(z)
        estimate_df.loc[estimate_df.index[k], 'z'] = z
        estimate_df.loc[estimate_df.index[k], ['x', 'dx']] = list(f.x)
        estimate_df.loc[estimate_df.index[k], 'r'] = f.y**2
        estimate_df.loc[estimate_df.index[k],
                        ['v11', 'v21', 'v12', 'v22']] = list(np.reshape(
                            f.P, 4))
    return (estimate_df, f)
コード例 #27
0
ファイル: Kalman_test1.py プロジェクト: viperyl/Northumbria
def tracker1():
    tracker = KalmanFilter(dim_x=4, dim_z=2)
    dt = 1.0
    tracker.F = np.array([[1, dt, 0, 0], [0, 1, 0, 0], [0, 0, 1, dt],
                          [0, 0, 0, 1]])
    tracker.u = 0
    tracker.H = np.array([[1 / 0.3048, 0, 0, 0], [0, 0, 1 / 0.3048, 0]])
    tracker.R = np.eye(2) * R_std**2
    q = Q_discrete_white_noise(dim=2, dt=dt, var=Q_std**2)
    tracker.Q = block_diag(q, q)
    tracker.x = np.array([[0, 0, 0, 0]]).T
    tracker.P = np.eye(4) * 500
    return tracker
コード例 #28
0
def run_standard_kf(zs, dt=1.0, std_x=0.3, std_y=0.3):
    kf = KalmanFilter(4, 2)
    kf.x = np.array([0.0, 0.0, 0.0, 0.0])
    kf.R = np.diag([std_x**2, std_y**2])
    kf.F = np.array([[1, dt, 0, 0], [0, 1, 0, 0], [0, 0, 1, dt], [0, 0, 0, 1]])
    kf.H = np.array([[1, 0, 0, 0], [0, 0, 1, 0]])

    kf.Q[0:2, 0:2] = Q_discrete_white_noise(2, dt=1, var=0.02)
    kf.Q[2:4, 2:4] = Q_discrete_white_noise(2, dt=1, var=0.02)

    xs, *_ = kf.batch_filter(zs)

    return xs
コード例 #29
0
 def _KF_init(self):  # para: Center of box used for prediction
     KF = KalmanFilter(4, 2)
     KF.x = self.KF_center + [
         0, 0
     ]  # can be improved for accuracy e.g. from which edge
     KF.F = np.array([[1, 0, 1, 0], [0, 1, 0, 1], [0, 0, 1, 0],
                      [0, 0, 0, 1]])
     KF.H = np.array([[1, 0, 0, 0], [0, 1, 0, 0]])
     KF.P *= 100
     KF.R *= 100
     # KF.Q *= 2
     # KF.predict()
     return KF
コード例 #30
0
 def newTracker(self, dt, var=0.06):
     tracker = KalmanFilter(dim_x=4, dim_z=2)
     tracker.x = np.array([0., 0., 0., 0.])
     tracker.F = np.array([[1, dt, 0, 0], [0, 1, 0, 0], [0, 0, 1, dt],
                           [0, 0, 0, 1]])
     tracker.H = np.array([[1, 0, 0, 0], [0, 0, 1, 0]])
     tracker.P = np.eye(4) * 500.
     tracker.R = np.array([[5., 0.], [0., 5.]])
     tracker.u = 0.
     Q = Q_discrete_white_noise(dim=2, dt=dt, var=var)
     Q = block_diag(Q, Q)
     tracker.Q = Q
     return tracker
コード例 #31
0
ファイル: mifunc.py プロジェクト: jesusceron/SLAM_matlab
def tracker1(x_initial, R_std, Q_std):
    tracker = KalmanFilter(dim_x=1, dim_z=1)

    tracker.F = np.array([1])
    tracker.u = 0.
    tracker.H = np.array([1])

    tracker.R = R_std
    tracker.Q = Q_std
    tracker.x = np.array([x_initial]).T
    tracker.P = 50

    return tracker
コード例 #32
0
ファイル: test_kf.py プロジェクト: poeticcapybara/filterpy
def test_univariate():
    f = KalmanFilter(dim_x=1, dim_z=1, dim_u=1)
    f.x = np.array([[0]])
    f.P *= 50
    f.H = np.array([[1.]])
    f.F = np.array([[1.]])
    f.B = np.array([[1.]])
    f.Q = .02
    f.R *= .1

    for i in range(50):
        f.predict()
        f.update(i)
コード例 #33
0
def single_measurement_test():
    dt = 0.1
    sigma = 2.

    kf2 = KalmanFilter(dim_x=2, dim_z=1)

    kf2.F = array ([[1., dt], [0., 1.]])
    kf2.H = array ([[1., 0.]])
    kf2.x = array ([[0.], [1.]])
    kf2.Q = array ([[dt**3/3, dt**2/2],
                    [dt**2/2, dt]]) * 0.02
    kf2.P *= 100
    kf2.R[0,0] = sigma**2

    random.seed(SEED)
    xs = []
    zs = []
    nom = []
    for i in range(1, 100):
        m0 = i + randn()*sigma
        z = array([[m0]])

        kf2.predict()
        kf2.update(z)

        xs.append(kf2.x.T[0])
        zs.append(z.T[0])
        nom.append(i)

    xs = asarray(xs)
    zs = asarray(zs)
    nom = asarray(nom)


    res = nom-xs[:,0]
    std_dev = np.std(res)
    print('std: {:.3f}'.format (std_dev))

    global DO_PLOT
    if DO_PLOT:

        plt.subplot(211)
        plt.plot(xs[:,0])
        #plt.plot(zs[:,0])


        plt.subplot(212)
        plt.plot(res)
        plt.show()

    return std_dev
コード例 #34
0
def single_measurement_test():
    dt = 0.1
    sigma = 2.

    kf2 = KalmanFilter(dim_x=2, dim_z=1)

    kf2.F = array ([[1., dt], [0., 1.]])
    kf2.H = array ([[1., 0.]])
    kf2.x = array ([[0.], [1.]])
    kf2.Q = array ([[dt**3/3, dt**2/2],
                    [dt**2/2, dt]]) * 0.02
    kf2.P *= 100
    kf2.R[0,0] = sigma**2

    random.seed(SEED)
    xs = []
    zs = []
    nom = []
    for i in range(1, 100):
        m0 = i + randn()*sigma
        z = array([[m0]])

        kf2.predict()
        kf2.update(z)

        xs.append(kf2.x.T[0])
        zs.append(z.T[0])
        nom.append(i)

    xs = asarray(xs)
    zs = asarray(zs)
    nom = asarray(nom)


    res = nom-xs[:,0]
    std_dev = np.std(res)
    print('std: {:.3f}'.format (std_dev))

    global DO_PLOT
    if DO_PLOT:

        plt.subplot(211)
        plt.plot(xs[:,0])
        #plt.plot(zs[:,0])


        plt.subplot(212)
        plt.plot(res)
        plt.show()

    return std_dev
コード例 #35
0
ファイル: filter_data.py プロジェクト: Pold87/treXton
def init_tracker():
    tracker = KalmanFilter(dim_x=4, dim_z=2)
    dt = 1.0  # time step

    tracker.F = np.array([[1, dt, 0, 0], [0, 1, 0, 0], [0, 0, 1, dt], [0, 0, 0, 1]])

    tracker.H = np.array([[1, 0, 0, 0], [0, 0, 1, 0]])

    tracker.R = np.eye(2) * 1000
    q = Q_discrete_white_noise(dim=2, dt=dt, var=1)
    tracker.Q = block_diag(q, q)
    tracker.x = np.array([[2000, 0, 700, 0]]).T
    tracker.P = np.eye(4) * 50.0
    return tracker
コード例 #36
0
def filter(data, var):
    rk = KalmanFilter(dim_x=2, dim_z=1)
    rk.F = np.array([[1., 1.], [0., 1.]])
    rk.H = np.array([[1., 0.]])
    initValue = data[0]
    # 初始位置 先设置为0
    rk.x = np.array([initValue, 0]).T
    # 测量误差
    rk.R *= var
    rk.P *= 10
    rk.Q *= 0.001
    mu, cov, _, _ = rk.batch_filter(data)
    M, P, C_ = rk.rts_smoother(mu, cov)
    return M[:, 0]
コード例 #37
0
ファイル: test_kf.py プロジェクト: BrianGasberg/filterpy
def test_procedure_form():

    dt = 1.
    std_z = 10.1

    x = np.array([[0.], [0.]])
    F = np.array([[1., dt], [0., 1.]])
    H = np.array([[1.,0.]])
    P = np.eye(2)
    R = np.eye(1)*std_z**2
    Q = Q_discrete_white_noise(2, dt, 5.1)

    kf = KalmanFilter(2, 1)
    kf.x = x.copy()
    kf.F = F.copy()
    kf.H = H.copy()
    kf.P = P.copy()
    kf.R = R.copy()
    kf.Q = Q.copy()


    measurements = []
    results = []

    xest = []
    ks = []
    pos = 0.
    for t in range (2000):
        z = pos + random.randn() * std_z
        pos += 100

        # perform kalman filtering
        x, P = predict(x, P, F, Q)
        kf.predict()
        assert norm(x - kf.x) < 1.e-12
        x, P, _, _, _, _ = update(x, P, z, R, H, True)
        kf.update(z)
        assert norm(x - kf.x) < 1.e-12

        # save data
        xest.append (x.copy())
        measurements.append(z)

    xest = np.asarray(xest)
    measurements = np.asarray(measurements)
    # plot data
    if DO_PLOT:
        plt.plot(xest[:, 0])
        plt.plot(xest[:, 1])
        plt.plot(measurements)
コード例 #38
0
def test_procedure_form():

    dt = 1.
    std_z = 10.1

    x = np.array([[0.], [0.]])
    F = np.array([[1., dt], [0., 1.]])
    H = np.array([[1., 0.]])
    P = np.eye(2)
    R = np.eye(1) * std_z**2
    Q = Q_discrete_white_noise(2, dt, 5.1)

    kf = KalmanFilter(2, 1)
    kf.x = x.copy()
    kf.F = F.copy()
    kf.H = H.copy()
    kf.P = P.copy()
    kf.R = R.copy()
    kf.Q = Q.copy()

    measurements = []
    results = []

    xest = []
    ks = []
    pos = 0.
    for t in range(2000):
        z = pos + random.randn() * std_z
        pos += 100

        # perform kalman filtering
        x, P = predict(x, P, F, Q)
        kf.predict()
        assert norm(x - kf.x) < 1.e-12
        x, P, _, _, _, _ = update(x, P, z, R, H, True)
        kf.update(z)
        assert norm(x - kf.x) < 1.e-12

        # save data
        xest.append(x.copy())
        measurements.append(z)

    xest = np.asarray(xest)
    measurements = np.asarray(measurements)
    # plot data
    if DO_PLOT:
        plt.plot(xest[:, 0])
        plt.plot(xest[:, 1])
        plt.plot(measurements)
コード例 #39
0
def get_kalman():
    kf = KalmanFilter(dim_x=2, dim_z=1)

    dz = 0.3

    kf.x = np.array([138.0, -0.1])

    kf.R = 2
    kf.F = np.array([[1., dz], [0., 1.]])
    kf.H = np.array([[1., 0.]])
    kf.P *= [5., 2.]

    kf.Q = Q_discrete_white_noise(2, dz, 2.)

    return kf
コード例 #40
0
    def FilteringData(self,DataArray):
        #First construct the object with the required dimensionality.
        f = KalmanFilter(dim_x=len(DataArray), dim_z=3)
        f.x = np.array(DataArray)# Real data
        f.F = np.array([[1., 1.],[0., 1.]])#Define the state transition matrix
        f.H = np.array([[1., 0.]])#Define the measurement function
        f.P = np.array([[1000., 0.],[0., 1000.]])#Define the covariance matrix
        f.R = 5 #Assign the measurement noise.
        from filterpy.common import Q_discrete_white_noise
        f.Q = Q_discrete_white_noise(dim=len(DataArray), dt=0.1, var=0.13) #Assign the process noise
        for i in range(100): #IterationNum
            f.predict()
            f.update()

        return f.x
コード例 #41
0
ファイル: test_kf.py プロジェクト: weiweikong/filterpy
def test_batch_filter():
    f = KalmanFilter(dim_x=2, dim_z=1)

    f.x = np.array([2.0, 0])  # initial state (location and velocity)

    f.F = np.array([[1.0, 1.0], [0.0, 1.0]])  # state transition matrix

    f.H = np.array([[1.0, 0.0]])  # Measurement function
    f.P *= 1000.0  # covariance matrix
    f.R = 5  # state uncertainty
    f.Q = 0.0001  # process uncertainty

    zs = [None, 1.0, 2.0]
    m, c, _, _ = f.batch_filter(zs, update_first=False)
    m, c, _, _ = f.batch_filter(zs, update_first=True)
コード例 #42
0
 def make_ca_filter(self, dt, R_std):
     cafilter = KalmanFilter(dim_x=6, dim_z=2)
     cafilter.x = np.array([0., 0., 0., 0., 0., 0.])
     cafilter.P *= 3
     cafilter.R *= np.eye(2) * R_std**2
     cafilter.F = np.array(
         [[1, dt, 0.5 * dt * dt, 0, 0, 0], [0, 1, dt, 0, 0, 0],
          [0, 0, 1, 0, 0, 0], [0, 0, 0, 1, dt, 0.5 * dt * dt],
          [0, 0, 0, 0, 1, dt], [0, 0, 0, 0, 0, 1]],
         dtype=float)
     cafilter.H = np.array([[1., 0, 0, 0, 0, 0], [0, 0, 0, 1., 0, 0]],
                           dtype=float)
     q = Q_discrete_white_noise(dim=3, dt=dt, var=0.01)
     cafilter.Q = block_diag(q, q)
     return cafilter
コード例 #43
0
def setup():
    F = generate_F_matrix(velocity=0.001)
    H = np.array([[0, 1]])
    sim = PlaybackSensor("data/vehicle_state.json",
                         ["fVx", "fYawrate", "fStwAng"])
    # set up kalman filter
    tracker = KalmanFilter(dim_x=2, dim_z=1)
    tracker.F = F
    tracker.Q = np.eye(2) * 0.001
    tracker.H = H
    tracker.R = measurement_var
    tracker.x = np.array([[0, 0]]).T
    tracker.P = np.eye(2) * 500

    return sim, tracker
コード例 #44
0
ファイル: Kalman_test.py プロジェクト: viperyl/Northumbria
def tracker1():
    tracker = KalmanFilter(dim_x=2, dim_z=2)
    dt = 0.002
    tracker.F = np.array([[1, -1 * dt], [0, 1]])

    tracker.u = 0.0

    tracker.H = np.array([[1, 0]])

    tracker.R = 0.05
    q = Q_discrete_white_noise(dim=2, dt=dt, var=0.01)

    tracker.Q = q
    tracker.x = np.array([[0, 0]]).T
    tracker.P = np.eye(2) * 5
    return tracker
コード例 #45
0
ファイル: tools_filter.py プロジェクト: dryabokon/tools
def do_filter_kalman_1D(X, noise_level=1, Q=0.001):
    #dim_x = X.shape[1]*2
    dim_x = 2

    fk = KalmanFilter(dim_x=dim_x, dim_z=1)
    fk.x = numpy.array([0., 1.])  # state (x and dx)
    fk.F = numpy.array([[1., 1.], [0., 1.]])

    fk.H = numpy.array([[1., 0.]])  # Measurement function
    fk.P = 10.  # covariance matrix
    fk.R = noise_level  # state uncertainty
    fk.Q = Q  # process uncertainty

    X_fildered, cov, _, _ = fk.batch_filter(X)

    return X_fildered[:, 0]
コード例 #46
0
ファイル: track_ped_csv.py プロジェクト: vbillys/track_ped
def createPersonKF(x, y):
    kalman_filter = KalmanFilter(dim_x=6, dim_z=2)
    # kalman_filter = KalmanFilter(dim_x=4, dim_z=4)
    dt = 0.1
    dt2 = 0.005
    # KF_F = np.array([[1., dt, 0 ,  0],
    # [0 , 1., 0 ,  0],
    # [0 , 0 , 1., dt],
    # [0 , 0 , 0 , 1.]])
    KF_Fca = np.array([[1.0, dt, dt2 / 2], [0, 1.0, dt], [0, 0, 1]])
    KF_F = np.vstack(
        (np.hstack((KF_Fca, np.zeros((3, 3)))), np.hstack((np.zeros((3, 3)), KF_Fca)))  # np.zeros((3,3)))),
    )  # , np.zeros((3,3)))) )))#,
    # np.hstack((np.zeros((3,3)),np.zeros((3,3)), KF_Fca))))
    KF_q = 0.7  # 0.3
    # KF_Q = np.vstack((np.hstack((Q_discrete_white_noise(2, dt=0.1, var=KF_q),np.zeros((2,2)))),np.hstack((np.zeros((2,2)),Q_discrete_white_noise(2, dt=0.1, var=KF_q)))))
    KF_Q = np.vstack(
        (
            np.hstack((Q_discrete_white_noise(3, dt=0.1, var=KF_q), np.zeros((3, 3)))),
            np.hstack((np.zeros((3, 3)), Q_discrete_white_noise(3, dt=0.1, var=KF_q))),
        )
    )
    KF_pd = 25.0
    KF_pv = 10.0
    KF_pa = 30.0
    KF_P = np.diag([KF_pd, KF_pv, KF_pa, KF_pd, KF_pv, KF_pa])
    KF_rd = 0.05
    KF_rv = 0.2  # 0.5
    KF_ra = 2  # 0.5
    KF_R = np.diag([KF_rd, KF_rd])
    # KF_R = np.diag([KF_rd,KF_rd, KF_rv, KF_rv])
    # KF_R = np.diag([KF_rd,KF_rd, KF_rv, KF_rv, KF_ra, KF_ra])
    # KF_H = np.array([[1.,0,0,0],[0,0,1.,0]])
    # KF_H = np.array([[1.,0,0,0],[0,0,1.,0],[0,1.,0,0],[0,0,0,1.]])
    KF_H = np.array([[1.0, 0, 0, 0, 0, 0], [0, 0, 0, 1.0, 0, 0]])

    # kalman_filter.x = np.array([x,0,y,0])
    kalman_filter.x = np.array([x, 0, 0, y, 0, 0])
    kalman_filter.F = KF_F
    kalman_filter.H = KF_H
    kalman_filter.Q = KF_Q
    kalman_filter.B = 0
    kalman_filter.R = KF_R
    kalman_filter.P = KF_P

    return kalman_filter