コード例 #1
0
def testBlackModelCheck():

    # Checking Andersen paper using Black's model
    # Used to check swaption price below - we have Ts = 1 and Te = 4
    # Expect a price around 122 cents which is what I find.

    valuation_date = Date(1, 1, 2020)
    libor_curve = DiscountCurveFlat(valuation_date, 0.06,
                                    FrequencyTypes.SEMI_ANNUAL)

    settlement_date = Date(1, 1, 2020)
    exercise_date = Date(1, 1, 2021)
    maturity_date = Date(1, 1, 2024)

    fixed_coupon = 0.06
    fixed_frequency_type = FrequencyTypes.SEMI_ANNUAL
    fixed_day_count_type = DayCountTypes.THIRTY_E_360_ISDA
    notional = 100.0

    # Pricing a PAY
    swaptionType = SwapTypes.PAY
    swaption = IborSwaption(settlement_date, exercise_date, maturity_date,
                            swaptionType, fixed_coupon, fixed_frequency_type,
                            fixed_day_count_type, notional)

    model = Black(0.20)
    v = swaption.value(valuation_date, libor_curve, model)
    testCases.header("LABEL", "VALUE")
    testCases.print("BLACK'S MODEL PRICE:", v * 100)
コード例 #2
0
def testIborSwaptionModels():

    ##########################################################################
    # COMPARISON OF MODELS
    ##########################################################################

    valuation_date = Date(1, 1, 2011)
    libor_curve = test_ibor_depositsAndSwaps(valuation_date)

    exercise_date = Date(1, 1, 2012)
    swapMaturityDate = Date(1, 1, 2017)

    swapFixedFrequencyType = FrequencyTypes.SEMI_ANNUAL
    swapFixedDayCountType = DayCountTypes.ACT_365F

    strikes = np.linspace(0.02, 0.08, 5)

    testCases.header("LAB", "STRIKE", "BLK", "BLK_SHFT", "SABR", "SABR_SHFT",
                     "HW", "BK")

    model1 = Black(0.00001)
    model2 = BlackShifted(0.00001, 0.0)
    model3 = SABR(0.013, 0.5, 0.5, 0.5)
    model4 = SABRShifted(0.013, 0.5, 0.5, 0.5, -0.008)
    model5 = HWTree(0.00001, 0.00001)
    model6 = BKTree(0.01, 0.01)

    settlement_date = valuation_date.add_weekdays(2)

    for k in strikes:
        swaptionType = SwapTypes.PAY
        swaption = IborSwaption(settlement_date, exercise_date,
                                swapMaturityDate, swaptionType, k,
                                swapFixedFrequencyType, swapFixedDayCountType)

        swap1 = swaption.value(valuation_date, libor_curve, model1)
        swap2 = swaption.value(valuation_date, libor_curve, model2)
        swap3 = swaption.value(valuation_date, libor_curve, model3)
        swap4 = swaption.value(valuation_date, libor_curve, model4)
        swap5 = swaption.value(valuation_date, libor_curve, model5)
        swap6 = swaption.value(valuation_date, libor_curve, model6)
        testCases.print("PAY", k, swap1, swap2, swap3, swap4, swap5, swap6)

    testCases.header("LABEL", "STRIKE", "BLK", "BLK_SHFTD", "SABR",
                     "SABR_SHFTD", "HW", "BK")

    for k in strikes:
        swaptionType = SwapTypes.RECEIVE
        swaption = IborSwaption(settlement_date, exercise_date,
                                swapMaturityDate, swaptionType, k,
                                swapFixedFrequencyType, swapFixedDayCountType)

        swap1 = swaption.value(valuation_date, libor_curve, model1)
        swap2 = swaption.value(valuation_date, libor_curve, model2)
        swap3 = swaption.value(valuation_date, libor_curve, model3)
        swap4 = swaption.value(valuation_date, libor_curve, model4)
        swap5 = swaption.value(valuation_date, libor_curve, model5)
        swap6 = swaption.value(valuation_date, libor_curve, model6)
        testCases.print("REC", k, swap1, swap2, swap3, swap4, swap5, swap6)
コード例 #3
0
def testIborSwaptionMatlabExamples():

    # We value a European swaption using Black's model and try to replicate a
    # ML example at https://fr.mathworks.com/help/fininst/swaptionbyblk.html

    testCases.header("=======================================")
    testCases.header("MATLAB EXAMPLE WITH FLAT TERM STRUCTURE")
    testCases.header("=======================================")

    valuation_date = Date(1, 1, 2010)
    libor_curve = DiscountCurveFlat(valuation_date, 0.06,
                                    FrequencyTypes.CONTINUOUS,
                                    DayCountTypes.THIRTY_E_360)

    settlement_date = Date(1, 1, 2011)
    exercise_date = Date(1, 1, 2016)
    maturity_date = Date(1, 1, 2019)

    fixed_coupon = 0.062
    fixed_frequency_type = FrequencyTypes.SEMI_ANNUAL
    fixed_day_count_type = DayCountTypes.THIRTY_E_360_ISDA
    notional = 100.0

    # Pricing a PAY
    swaptionType = SwapTypes.PAY
    swaption = IborSwaption(settlement_date, exercise_date, maturity_date,
                            swaptionType, fixed_coupon, fixed_frequency_type,
                            fixed_day_count_type, notional)

    model = Black(0.20)
    v_finpy = swaption.value(valuation_date, libor_curve, model)
    v_matlab = 2.071

    testCases.header("LABEL", "VALUE")
    testCases.print("FP Price:", v_finpy)
    testCases.print("MATLAB Prix:", v_matlab)
    testCases.print("DIFF:", v_finpy - v_matlab)

    ###############################################################################

    testCases.header("===================================")
    testCases.header("MATLAB EXAMPLE WITH TERM STRUCTURE")
    testCases.header("===================================")

    valuation_date = Date(1, 1, 2010)

    dates = [
        Date(1, 1, 2011),
        Date(1, 1, 2012),
        Date(1, 1, 2013),
        Date(1, 1, 2014),
        Date(1, 1, 2015)
    ]

    zero_rates = [0.03, 0.034, 0.037, 0.039, 0.040]

    contFreq = FrequencyTypes.CONTINUOUS
    interp_type = InterpTypes.LINEAR_ZERO_RATES
    day_count_type = DayCountTypes.THIRTY_E_360

    libor_curve = DiscountCurveZeros(valuation_date, dates, zero_rates,
                                     contFreq, day_count_type, interp_type)

    settlement_date = Date(1, 1, 2011)
    exercise_date = Date(1, 1, 2012)
    maturity_date = Date(1, 1, 2017)
    fixed_coupon = 0.03

    fixed_frequency_type = FrequencyTypes.SEMI_ANNUAL
    fixed_day_count_type = DayCountTypes.THIRTY_E_360
    float_frequency_type = FrequencyTypes.SEMI_ANNUAL
    float_day_count_type = DayCountTypes.THIRTY_E_360
    notional = 1000.0

    # Pricing a put
    swaptionType = SwapTypes.RECEIVE
    swaption = IborSwaption(settlement_date, exercise_date, maturity_date,
                            swaptionType, fixed_coupon, fixed_frequency_type,
                            fixed_day_count_type, notional,
                            float_frequency_type, float_day_count_type)

    model = Black(0.21)
    v_finpy = swaption.value(valuation_date, libor_curve, model)
    v_matlab = 0.5771

    testCases.header("LABEL", "VALUE")
    testCases.print("FP Price:", v_finpy)
    testCases.print("MATLAB Prix:", v_matlab)
    testCases.print("DIFF:", v_finpy - v_matlab)

    ###############################################################################

    testCases.header("===================================")
    testCases.header("MATLAB EXAMPLE WITH SHIFTED BLACK")
    testCases.header("===================================")

    valuation_date = Date(1, 1, 2016)

    dates = [
        Date(1, 1, 2017),
        Date(1, 1, 2018),
        Date(1, 1, 2019),
        Date(1, 1, 2020),
        Date(1, 1, 2021)
    ]

    zero_rates = np.array([-0.02, 0.024, 0.047, 0.090, 0.12]) / 100.0

    contFreq = FrequencyTypes.ANNUAL
    interp_type = InterpTypes.LINEAR_ZERO_RATES
    day_count_type = DayCountTypes.THIRTY_E_360

    libor_curve = DiscountCurveZeros(valuation_date, dates, zero_rates,
                                     contFreq, day_count_type, interp_type)

    settlement_date = Date(1, 1, 2016)
    exercise_date = Date(1, 1, 2017)
    maturity_date = Date(1, 1, 2020)
    fixed_coupon = -0.003

    fixed_frequency_type = FrequencyTypes.SEMI_ANNUAL
    fixed_day_count_type = DayCountTypes.THIRTY_E_360_ISDA
    float_frequency_type = FrequencyTypes.SEMI_ANNUAL
    float_day_count_type = DayCountTypes.THIRTY_E_360_ISDA
    notional = 1000.0

    # Pricing a PAY
    swaptionType = SwapTypes.PAY
    swaption = IborSwaption(settlement_date, exercise_date, maturity_date,
                            swaptionType, fixed_coupon, fixed_frequency_type,
                            fixed_day_count_type, notional,
                            float_frequency_type, float_day_count_type)

    model = BlackShifted(0.31, 0.008)
    v_finpy = swaption.value(valuation_date, libor_curve, model)
    v_matlab = 12.8301

    testCases.header("LABEL", "VALUE")
    testCases.print("FP Price:", v_finpy)
    testCases.print("MATLAB Prix:", v_matlab)
    testCases.print("DIFF:", v_finpy - v_matlab)

    ###############################################################################

    testCases.header("===================================")
    testCases.header("MATLAB EXAMPLE WITH HULL WHITE")
    testCases.header("===================================")

    # https://fr.mathworks.com/help/fininst/swaptionbyhw.html

    valuation_date = Date(1, 1, 2007)

    dates = [
        Date(1, 1, 2007),
        Date(1, 7, 2007),
        Date(1, 1, 2008),
        Date(1, 7, 2008),
        Date(1, 1, 2009),
        Date(1, 7, 2009),
        Date(1, 1, 2010),
        Date(1, 7, 2010),
        Date(1, 1, 2011),
        Date(1, 7, 2011),
        Date(1, 1, 2012)
    ]

    zero_rates = np.array([0.075] * 11)
    interp_type = InterpTypes.FLAT_FWD_RATES
    day_count_type = DayCountTypes.THIRTY_E_360_ISDA
    contFreq = FrequencyTypes.SEMI_ANNUAL

    libor_curve = DiscountCurveZeros(valuation_date, dates, zero_rates,
                                     contFreq, day_count_type, interp_type)

    settlement_date = valuation_date
    exercise_date = Date(1, 1, 2010)
    maturity_date = Date(1, 1, 2012)
    fixed_coupon = 0.04

    fixed_frequency_type = FrequencyTypes.SEMI_ANNUAL
    fixed_day_count_type = DayCountTypes.THIRTY_E_360_ISDA
    notional = 100.0

    swaptionType = SwapTypes.RECEIVE
    swaption = IborSwaption(settlement_date, exercise_date, maturity_date,
                            swaptionType, fixed_coupon, fixed_frequency_type,
                            fixed_day_count_type, notional)

    model = HWTree(0.05, 0.01)
    v_finpy = swaption.value(valuation_date, libor_curve, model)
    v_matlab = 2.9201

    testCases.header("LABEL", "VALUE")
    testCases.print("FP Price:", v_finpy)
    testCases.print("MATLAB Prix:", v_matlab)
    testCases.print("DIFF:", v_finpy - v_matlab)

    ###############################################################################

    testCases.header("====================================")
    testCases.header("MATLAB EXAMPLE WITH BLACK KARASINSKI")
    testCases.header("====================================")

    # https://fr.mathworks.com/help/fininst/swaptionbybk.html
    valuation_date = Date(1, 1, 2007)

    dates = [
        Date(1, 1, 2007),
        Date(1, 7, 2007),
        Date(1, 1, 2008),
        Date(1, 7, 2008),
        Date(1, 1, 2009),
        Date(1, 7, 2009),
        Date(1, 1, 2010),
        Date(1, 7, 2010),
        Date(1, 1, 2011),
        Date(1, 7, 2011),
        Date(1, 1, 2012)
    ]

    zero_rates = np.array([0.07] * 11)

    interp_type = InterpTypes.FLAT_FWD_RATES
    day_count_type = DayCountTypes.THIRTY_E_360_ISDA
    contFreq = FrequencyTypes.SEMI_ANNUAL

    libor_curve = DiscountCurveZeros(valuation_date, dates, zero_rates,
                                     contFreq, day_count_type, interp_type)

    settlement_date = valuation_date
    exercise_date = Date(1, 1, 2011)
    maturity_date = Date(1, 1, 2012)

    fixed_frequency_type = FrequencyTypes.SEMI_ANNUAL
    fixed_day_count_type = DayCountTypes.THIRTY_E_360_ISDA
    notional = 100.0

    model = BKTree(0.1, 0.05, 200)

    fixed_coupon = 0.07
    swaptionType = SwapTypes.PAY
    swaption = IborSwaption(settlement_date, exercise_date, maturity_date,
                            swaptionType, fixed_coupon, fixed_frequency_type,
                            fixed_day_count_type, notional)

    v_finpy = swaption.value(valuation_date, libor_curve, model)
    v_matlab = 0.3634

    testCases.header("LABEL", "VALUE")
    testCases.print("FP Price:", v_finpy)
    testCases.print("MATLAB Prix:", v_matlab)
    testCases.print("DIFF:", v_finpy - v_matlab)

    fixed_coupon = 0.0725
    swaptionType = SwapTypes.RECEIVE
    swaption = IborSwaption(settlement_date, exercise_date, maturity_date,
                            swaptionType, fixed_coupon, fixed_frequency_type,
                            fixed_day_count_type, notional)

    v_finpy = swaption.value(valuation_date, libor_curve, model)
    v_matlab = 0.4798

    testCases.header("LABEL", "VALUE")
    testCases.print("FP Price:", v_finpy)
    testCases.print("MATLAB Prix:", v_matlab)
    testCases.print("DIFF:", v_finpy - v_matlab)

    ###############################################################################

    testCases.header("====================================")
    testCases.header("MATLAB EXAMPLE WITH BLACK-DERMAN-TOY")
    testCases.header("====================================")

    # https://fr.mathworks.com/help/fininst/swaptionbybdt.html

    valuation_date = Date(1, 1, 2007)

    dates = [
        Date(1, 1, 2007),
        Date(1, 7, 2007),
        Date(1, 1, 2008),
        Date(1, 7, 2008),
        Date(1, 1, 2009),
        Date(1, 7, 2009),
        Date(1, 1, 2010),
        Date(1, 7, 2010),
        Date(1, 1, 2011),
        Date(1, 7, 2011),
        Date(1, 1, 2012)
    ]

    zero_rates = np.array([0.06] * 11)

    interp_type = InterpTypes.FLAT_FWD_RATES
    day_count_type = DayCountTypes.THIRTY_E_360_ISDA
    contFreq = FrequencyTypes.ANNUAL

    libor_curve = DiscountCurveZeros(valuation_date, dates, zero_rates,
                                     contFreq, day_count_type, interp_type)

    settlement_date = valuation_date
    exercise_date = Date(1, 1, 2012)
    maturity_date = Date(1, 1, 2015)

    fixed_frequency_type = FrequencyTypes.ANNUAL
    fixed_day_count_type = DayCountTypes.THIRTY_E_360_ISDA
    notional = 100.0

    fixed_coupon = 0.062
    swaptionType = SwapTypes.PAY
    swaption = IborSwaption(settlement_date, exercise_date, maturity_date,
                            swaptionType, fixed_coupon, fixed_frequency_type,
                            fixed_day_count_type, notional)

    model = BDTTree(0.20, 200)
    v_finpy = swaption.value(valuation_date, libor_curve, model)
    v_matlab = 2.0592

    testCases.header("LABEL", "VALUE")
    testCases.print("FP Price:", v_finpy)
    testCases.print("MATLAB Prix:", v_matlab)
    testCases.print("DIFF:", v_finpy - v_matlab)
コード例 #4
0
def testFinIborCashSettledSwaption():

    testCases.header("LABEL", "VALUE")

    valuation_date = Date(1, 1, 2020)
    settlement_date = Date(1, 1, 2020)

    depoDCCType = DayCountTypes.THIRTY_E_360_ISDA
    depos = []
    depo = IborDeposit(settlement_date, "1W", 0.0023, depoDCCType)
    depos.append(depo)
    depo = IborDeposit(settlement_date, "1M", 0.0023, depoDCCType)
    depos.append(depo)
    depo = IborDeposit(settlement_date, "3M", 0.0023, depoDCCType)
    depos.append(depo)
    depo = IborDeposit(settlement_date, "6M", 0.0023, depoDCCType)
    depos.append(depo)

    # No convexity correction provided so I omit interest rate futures

    settlement_date = Date(2, 1, 2020)

    swaps = []
    accType = DayCountTypes.ACT_365F
    fixedFreqType = FrequencyTypes.SEMI_ANNUAL
    fixed_leg_type = SwapTypes.PAY

    swap = IborSwap(settlement_date, "3Y", fixed_leg_type, 0.00790,
                    fixedFreqType, accType)
    swaps.append(swap)
    swap = IborSwap(settlement_date, "4Y", fixed_leg_type, 0.01200,
                    fixedFreqType, accType)
    swaps.append(swap)
    swap = IborSwap(settlement_date, "5Y", fixed_leg_type, 0.01570,
                    fixedFreqType, accType)
    swaps.append(swap)
    swap = IborSwap(settlement_date, "6Y", fixed_leg_type, 0.01865,
                    fixedFreqType, accType)
    swaps.append(swap)
    swap = IborSwap(settlement_date, "7Y", fixed_leg_type, 0.02160,
                    fixedFreqType, accType)
    swaps.append(swap)
    swap = IborSwap(settlement_date, "8Y", fixed_leg_type, 0.02350,
                    fixedFreqType, accType)
    swaps.append(swap)
    swap = IborSwap(settlement_date, "9Y", fixed_leg_type, 0.02540,
                    fixedFreqType, accType)
    swaps.append(swap)
    swap = IborSwap(settlement_date, "10Y", fixed_leg_type, 0.0273,
                    fixedFreqType, accType)
    swaps.append(swap)
    swap = IborSwap(settlement_date, "15Y", fixed_leg_type, 0.0297,
                    fixedFreqType, accType)
    swaps.append(swap)
    swap = IborSwap(settlement_date, "20Y", fixed_leg_type, 0.0316,
                    fixedFreqType, accType)
    swaps.append(swap)
    swap = IborSwap(settlement_date, "25Y", fixed_leg_type, 0.0335,
                    fixedFreqType, accType)
    swaps.append(swap)
    swap = IborSwap(settlement_date, "30Y", fixed_leg_type, 0.0354,
                    fixedFreqType, accType)
    swaps.append(swap)

    libor_curve = IborSingleCurve(valuation_date, depos, [], swaps,
                                  InterpTypes.LINEAR_ZERO_RATES)

    exercise_date = settlement_date.add_tenor("5Y")
    swapMaturityDate = exercise_date.add_tenor("5Y")
    swapFixedCoupon = 0.040852
    swapFixedFrequencyType = FrequencyTypes.SEMI_ANNUAL
    swapFixedDayCountType = DayCountTypes.THIRTY_E_360_ISDA
    swapFloatFrequencyType = FrequencyTypes.QUARTERLY
    swapFloatDayCountType = DayCountTypes.ACT_360
    swapNotional = 1000000
    fixed_leg_type = SwapTypes.PAY

    swaption = IborSwaption(settlement_date, exercise_date, swapMaturityDate,
                            fixed_leg_type, swapFixedCoupon,
                            swapFixedFrequencyType, swapFixedDayCountType,
                            swapNotional, swapFloatFrequencyType,
                            swapFloatDayCountType)

    model = Black(0.1533)
    v = swaption.value(settlement_date, libor_curve, model)
    testCases.print("Swaption No-Arb Value:", v)

    fwdSwapRate1 = libor_curve.swap_rate(exercise_date, swapMaturityDate,
                                         swapFixedFrequencyType,
                                         swapFixedDayCountType)

    testCases.print("Curve Fwd Swap Rate:", fwdSwapRate1)

    fwdSwap = IborSwap(exercise_date, swapMaturityDate, fixed_leg_type,
                       swapFixedCoupon, swapFixedFrequencyType,
                       swapFixedDayCountType)

    fwdSwapRate2 = fwdSwap.swap_rate(settlement_date, libor_curve)
    testCases.print("Fwd Swap Swap Rate:", fwdSwapRate2)

    model = Black(0.1533)

    v = swaption.cash_settled_value(valuation_date, libor_curve, fwdSwapRate2,
                                    model)

    testCases.print("Swaption Cash Settled Value:", v)
コード例 #5
0
def test_IborSwaptionQLExample():

    valuation_date = Date(4, 3, 2014)
    settlement_date = Date(4, 3, 2014)

    depoDCCType = DayCountTypes.THIRTY_E_360_ISDA
    depos = []
    depo = IborDeposit(settlement_date, "1W", 0.0023, depoDCCType)
    depos.append(depo)
    depo = IborDeposit(settlement_date, "1M", 0.0023, depoDCCType)
    depos.append(depo)
    depo = IborDeposit(settlement_date, "3M", 0.0023, depoDCCType)
    depos.append(depo)
    depo = IborDeposit(settlement_date, "6M", 0.0023, depoDCCType)
    depos.append(depo)

    # No convexity correction provided so I omit interest rate futures

    swaps = []
    accType = DayCountTypes.ACT_365F
    fixedFreqType = FrequencyTypes.SEMI_ANNUAL
    fixed_leg_type = SwapTypes.PAY

    swap = IborSwap(settlement_date, "3Y", fixed_leg_type, 0.00790,
                    fixedFreqType, accType)
    swaps.append(swap)
    swap = IborSwap(settlement_date, "4Y", fixed_leg_type, 0.01200,
                    fixedFreqType, accType)
    swaps.append(swap)
    swap = IborSwap(settlement_date, "5Y", fixed_leg_type, 0.01570,
                    fixedFreqType, accType)
    swaps.append(swap)
    swap = IborSwap(settlement_date, "6Y", fixed_leg_type, 0.01865,
                    fixedFreqType, accType)
    swaps.append(swap)
    swap = IborSwap(settlement_date, "7Y", fixed_leg_type, 0.02160,
                    fixedFreqType, accType)
    swaps.append(swap)
    swap = IborSwap(settlement_date, "8Y", fixed_leg_type, 0.02350,
                    fixedFreqType, accType)
    swaps.append(swap)
    swap = IborSwap(settlement_date, "9Y", fixed_leg_type, 0.02540,
                    fixedFreqType, accType)
    swaps.append(swap)
    swap = IborSwap(settlement_date, "10Y", fixed_leg_type, 0.0273,
                    fixedFreqType, accType)
    swaps.append(swap)
    swap = IborSwap(settlement_date, "15Y", fixed_leg_type, 0.0297,
                    fixedFreqType, accType)
    swaps.append(swap)
    swap = IborSwap(settlement_date, "20Y", fixed_leg_type, 0.0316,
                    fixedFreqType, accType)
    swaps.append(swap)
    swap = IborSwap(settlement_date, "25Y", fixed_leg_type, 0.0335,
                    fixedFreqType, accType)
    swaps.append(swap)
    swap = IborSwap(settlement_date, "30Y", fixed_leg_type, 0.0354,
                    fixedFreqType, accType)
    swaps.append(swap)

    libor_curve = IborSingleCurve(valuation_date, depos, [], swaps,
                                  InterpTypes.LINEAR_ZERO_RATES)

    exercise_date = settlement_date.add_tenor("5Y")
    swapMaturityDate = exercise_date.add_tenor("5Y")
    swapFixedCoupon = 0.040852
    swapFixedFrequencyType = FrequencyTypes.SEMI_ANNUAL
    swapFixedDayCountType = DayCountTypes.THIRTY_E_360_ISDA
    swapFloatFrequencyType = FrequencyTypes.QUARTERLY
    swapFloatDayCountType = DayCountTypes.ACT_360
    swapNotional = 1000000
    swaptionType = SwapTypes.PAY

    swaption = IborSwaption(settlement_date, exercise_date, swapMaturityDate,
                            swaptionType, swapFixedCoupon,
                            swapFixedFrequencyType, swapFixedDayCountType,
                            swapNotional, swapFloatFrequencyType,
                            swapFloatDayCountType)

    testCases.header("MODEL", "VALUE")

    model = Black(0.1533)
    v = swaption.value(settlement_date, libor_curve, model)
    testCases.print(model.__class__, v)

    model = BlackShifted(0.1533, -0.008)
    v = swaption.value(settlement_date, libor_curve, model)
    testCases.print(model.__class__, v)

    model = SABR(0.132, 0.5, 0.5, 0.5)
    v = swaption.value(settlement_date, libor_curve, model)
    testCases.print(model.__class__, v)

    model = SABRShifted(0.352, 0.5, 0.15, 0.15, -0.005)
    v = swaption.value(settlement_date, libor_curve, model)
    testCases.print(model.__class__, v)

    model = HWTree(0.010000000, 0.00000000001)
    v = swaption.value(settlement_date, libor_curve, model)
    testCases.print(model.__class__, v)
コード例 #6
0
def test_IborBermudanSwaptionBKModel():
    """ Replicate examples in paper by Leif Andersen which can be found at
    file:///C:/Users/Dominic/Downloads/SSRN-id155208.pdf """

    valuation_date = Date(1, 1, 2011)
    settlement_date = valuation_date
    exercise_date = settlement_date.add_years(1)
    swapMaturityDate = settlement_date.add_years(4)

    swapFixedCoupon = 0.060
    swapFixedFrequencyType = FrequencyTypes.SEMI_ANNUAL
    swapFixedDayCountType = DayCountTypes.ACT_365F

    libor_curve = DiscountCurveFlat(valuation_date, 0.0625,
                                    FrequencyTypes.SEMI_ANNUAL,
                                    DayCountTypes.ACT_365F)

    fwdPAYSwap = IborSwap(exercise_date, swapMaturityDate, SwapTypes.PAY,
                          swapFixedCoupon, swapFixedFrequencyType,
                          swapFixedDayCountType)

    fwdSwapValue = fwdPAYSwap.value(settlement_date, libor_curve, libor_curve)

    testCases.header("LABEL", "VALUE")
    testCases.print("FWD SWAP VALUE", fwdSwapValue)

    # fwdPAYSwap.print_fixed_leg_pv()

    # Now we create the European swaptions
    fixed_leg_type = SwapTypes.PAY
    europeanSwaptionPay = IborSwaption(settlement_date, exercise_date,
                                       swapMaturityDate, fixed_leg_type,
                                       swapFixedCoupon, swapFixedFrequencyType,
                                       swapFixedDayCountType)

    fixed_leg_type = SwapTypes.RECEIVE
    europeanSwaptionRec = IborSwaption(settlement_date, exercise_date,
                                       swapMaturityDate, fixed_leg_type,
                                       swapFixedCoupon, swapFixedFrequencyType,
                                       swapFixedDayCountType)

    ###########################################################################
    ###########################################################################
    ###########################################################################
    # BLACK'S MODEL
    ###########################################################################
    ###########################################################################
    ###########################################################################

    testCases.banner("======= ZERO VOLATILITY ========")
    model = Black(0.0000001)
    testCases.print("Black Model", model._volatility)

    valuePay = europeanSwaptionPay.value(settlement_date, libor_curve, model)
    testCases.print("EUROPEAN BLACK PAY VALUE ZERO VOL:", valuePay)

    valueRec = europeanSwaptionRec.value(settlement_date, libor_curve, model)
    testCases.print("EUROPEAN BLACK REC VALUE ZERO VOL:", valueRec)

    payRec = valuePay - valueRec
    testCases.print("PAY MINUS RECEIVER :", payRec)

    testCases.banner("======= 20%% BLACK VOLATILITY ========")

    model = Black(0.20)
    testCases.print("Black Model", model._volatility)

    valuePay = europeanSwaptionPay.value(settlement_date, libor_curve, model)
    testCases.print("EUROPEAN BLACK PAY VALUE:", valuePay)

    valueRec = europeanSwaptionRec.value(settlement_date, libor_curve, model)
    testCases.print("EUROPEAN BLACK REC VALUE:", valueRec)

    payRec = valuePay - valueRec
    testCases.print("PAY MINUS RECEIVER :", payRec)

    ###########################################################################
    ###########################################################################
    ###########################################################################
    # BK MODEL
    ###########################################################################
    ###########################################################################
    ###########################################################################

    testCases.banner("=======================================================")
    testCases.banner("=======================================================")
    testCases.banner("==================== BK MODEL =========================")
    testCases.banner("=======================================================")
    testCases.banner("=======================================================")

    testCases.banner("======= 0% VOLATILITY EUROPEAN SWAPTION BK MODEL ======")

    # Used BK with constant short-rate volatility
    sigma = 0.000000001
    a = 0.01
    num_time_steps = 100
    model = BKTree(sigma, a, num_time_steps)

    valuePay = europeanSwaptionPay.value(valuation_date, libor_curve, model)
    testCases.print("EUROPEAN BK PAY VALUE:", valuePay)

    valueRec = europeanSwaptionRec.value(valuation_date, libor_curve, model)
    testCases.print("EUROPEAN BK REC VALUE:", valueRec)

    payRec = valuePay - valueRec
    testCases.print("PAY MINUS RECEIVER :", payRec)

    testCases.banner(
        "======= 20% VOLATILITY EUROPEAN SWAPTION BK MODEL ========")

    # Used BK with constant short-rate volatility
    sigma = 0.20
    a = 0.01
    model = BKTree(sigma, a, num_time_steps)

    testCases.banner("BK MODEL SWAPTION CLASS EUROPEAN EXERCISE")

    valuePay = europeanSwaptionPay.value(valuation_date, libor_curve, model)
    testCases.print("EUROPEAN BK PAY VALUE:", valuePay)

    valueRec = europeanSwaptionRec.value(valuation_date, libor_curve, model)
    testCases.print("EUROPEAN BK REC VALUE:", valueRec)

    payRec = valuePay - valueRec
    testCases.print("PAY MINUS RECEIVER :", payRec)

    ###########################################################################

    # Now we create the Bermudan swaptions but only allow European exercise
    fixed_leg_type = SwapTypes.PAY
    exercise_type = FinExerciseTypes.EUROPEAN

    bermudan_swaption_pay = IborBermudanSwaption(
        settlement_date, exercise_date, swapMaturityDate, fixed_leg_type,
        exercise_type, swapFixedCoupon, swapFixedFrequencyType,
        swapFixedDayCountType)

    fixed_leg_type = SwapTypes.RECEIVE
    exercise_type = FinExerciseTypes.EUROPEAN

    bermudan_swaption_rec = IborBermudanSwaption(
        settlement_date, exercise_date, swapMaturityDate, fixed_leg_type,
        exercise_type, swapFixedCoupon, swapFixedFrequencyType,
        swapFixedDayCountType)

    testCases.banner(
        "======= 0% VOLATILITY BERMUDAN SWAPTION EUROPEAN EXERCISE BK MODEL ========"
    )

    # Used BK with constant short-rate volatility
    sigma = 0.000001
    a = 0.01
    model = BKTree(sigma, a, num_time_steps)

    testCases.banner("BK MODEL BERMUDAN SWAPTION CLASS EUROPEAN EXERCISE")
    valuePay = bermudan_swaption_pay.value(valuation_date, libor_curve, model)
    testCases.print("BERMUDAN BK PAY VALUE:", valuePay)

    valueRec = bermudan_swaption_rec.value(valuation_date, libor_curve, model)
    testCases.print("BERMUDAN BK REC VALUE:", valueRec)

    payRec = valuePay - valueRec
    testCases.print("PAY MINUS RECEIVER :", payRec)

    testCases.banner(
        "======= 20% VOLATILITY BERMUDAN SWAPTION EUROPEAN EXERCISE BK MODEL ========"
    )

    # Used BK with constant short-rate volatility
    sigma = 0.2
    a = 0.01
    model = BKTree(sigma, a, num_time_steps)

    testCases.banner("BK MODEL BERMUDAN SWAPTION CLASS EUROPEAN EXERCISE")
    valuePay = bermudan_swaption_pay.value(valuation_date, libor_curve, model)
    testCases.print("BERMUDAN BK PAY VALUE:", valuePay)

    valueRec = bermudan_swaption_rec.value(valuation_date, libor_curve, model)
    testCases.print("BERMUDAN BK REC VALUE:", valueRec)

    payRec = valuePay - valueRec
    testCases.print("PAY MINUS RECEIVER :", payRec)

    ###########################################################################
    # Now we create the Bermudan swaptions but allow Bermudan exercise
    ###########################################################################

    fixed_leg_type = SwapTypes.PAY
    exercise_type = FinExerciseTypes.BERMUDAN

    bermudan_swaption_pay = IborBermudanSwaption(
        settlement_date, exercise_date, swapMaturityDate, fixed_leg_type,
        exercise_type, swapFixedCoupon, swapFixedFrequencyType,
        swapFixedDayCountType)

    fixed_leg_type = SwapTypes.RECEIVE
    exercise_type = FinExerciseTypes.BERMUDAN

    bermudan_swaption_rec = IborBermudanSwaption(
        settlement_date, exercise_date, swapMaturityDate, fixed_leg_type,
        exercise_type, swapFixedCoupon, swapFixedFrequencyType,
        swapFixedDayCountType)

    testCases.banner(
        "======= ZERO VOLATILITY BERMUDAN SWAPTION BERMUDAN EXERCISE BK MODEL ========"
    )

    # Used BK with constant short-rate volatility
    sigma = 0.000001
    a = 0.01
    model = BKTree(sigma, a, num_time_steps)

    testCases.banner("BK MODEL BERMUDAN SWAPTION CLASS BERMUDAN EXERCISE")
    valuePay = bermudan_swaption_pay.value(valuation_date, libor_curve, model)
    testCases.print("BERMUDAN BK PAY VALUE:", valuePay)

    valueRec = bermudan_swaption_rec.value(valuation_date, libor_curve, model)
    testCases.print("BERMUDAN BK REC VALUE:", valueRec)

    payRec = valuePay - valueRec
    testCases.print("PAY MINUS RECEIVER :", payRec)

    testCases.banner(
        "======= 20% VOLATILITY BERMUDAN SWAPTION BERMUDAN EXERCISE BK MODEL ========"
    )

    # Used BK with constant short-rate volatility
    sigma = 0.20
    a = 0.01
    model = BKTree(sigma, a, num_time_steps)

    testCases.banner("BK MODEL BERMUDAN SWAPTION CLASS BERMUDAN EXERCISE")
    valuePay = bermudan_swaption_pay.value(valuation_date, libor_curve, model)
    testCases.print("BERMUDAN BK PAY VALUE:", valuePay)

    valueRec = bermudan_swaption_rec.value(valuation_date, libor_curve, model)
    testCases.print("BERMUDAN BK REC VALUE:", valueRec)

    payRec = valuePay - valueRec
    testCases.print("PAY MINUS RECEIVER :", payRec)

    ###########################################################################
    ###########################################################################
    ###########################################################################
    # BDT MODEL
    ###########################################################################
    ###########################################################################
    ###########################################################################

    testCases.banner("=======================================================")
    testCases.banner("=======================================================")
    testCases.banner("======================= BDT MODEL =====================")
    testCases.banner("=======================================================")
    testCases.banner("=======================================================")

    testCases.banner("====== 0% VOLATILITY EUROPEAN SWAPTION BDT MODEL ======")

    # Used BK with constant short-rate volatility
    sigma = 0.00001
    num_time_steps = 200
    model = BDTTree(sigma, num_time_steps)

    valuePay = europeanSwaptionPay.value(valuation_date, libor_curve, model)
    testCases.print("EUROPEAN BDT PAY VALUE:", valuePay)

    valueRec = europeanSwaptionRec.value(valuation_date, libor_curve, model)
    testCases.print("EUROPEAN BDT REC VALUE:", valueRec)

    payRec = valuePay - valueRec
    testCases.print("PAY MINUS RECEIVER :", payRec)

    testCases.banner("===== 20% VOLATILITY EUROPEAN SWAPTION BDT MODEL ======")

    # Used BK with constant short-rate volatility
    sigma = 0.20
    a = 0.01
    model = BDTTree(sigma, num_time_steps)

    testCases.banner("BDT MODEL SWAPTION CLASS EUROPEAN EXERCISE")

    valuePay = europeanSwaptionPay.value(valuation_date, libor_curve, model)
    testCases.print("EUROPEAN BDT PAY VALUE:", valuePay)

    valueRec = europeanSwaptionRec.value(valuation_date, libor_curve, model)
    testCases.print("EUROPEAN BDT REC VALUE:", valueRec)

    payRec = valuePay - valueRec
    testCases.print("PAY MINUS RECEIVER :", payRec)

    ###########################################################################

    # Now we create the Bermudan swaptions but only allow European exercise
    fixed_leg_type = SwapTypes.PAY
    exercise_type = FinExerciseTypes.EUROPEAN

    bermudan_swaption_pay = IborBermudanSwaption(
        settlement_date, exercise_date, swapMaturityDate, fixed_leg_type,
        exercise_type, swapFixedCoupon, swapFixedFrequencyType,
        swapFixedDayCountType)

    fixed_leg_type = SwapTypes.RECEIVE
    bermudan_swaption_rec = IborBermudanSwaption(
        settlement_date, exercise_date, swapMaturityDate, fixed_leg_type,
        exercise_type, swapFixedCoupon, swapFixedFrequencyType,
        swapFixedDayCountType)

    testCases.banner(
        "======= 0% VOLATILITY BERMUDAN SWAPTION EUROPEAN EXERCISE BDT MODEL ========"
    )

    # Used BK with constant short-rate volatility
    sigma = 0.000001
    model = BDTTree(sigma, num_time_steps)

    testCases.banner("BK MODEL BERMUDAN SWAPTION CLASS EUROPEAN EXERCISE")
    valuePay = bermudan_swaption_pay.value(valuation_date, libor_curve, model)
    testCases.print("BERMUDAN BDT PAY VALUE:", valuePay)

    valueRec = bermudan_swaption_rec.value(valuation_date, libor_curve, model)
    testCases.print("BERMUDAN BDT REC VALUE:", valueRec)

    payRec = valuePay - valueRec
    testCases.print("PAY MINUS RECEIVER :", payRec)

    testCases.banner(
        "======= 20% VOLATILITY BERMUDAN SWAPTION EUROPEAN EXERCISE BDT MODEL ========"
    )

    # Used BK with constant short-rate volatility
    sigma = 0.2
    model = BDTTree(sigma, num_time_steps)

    testCases.banner("BDT MODEL BERMUDAN SWAPTION CLASS EUROPEAN EXERCISE")
    valuePay = bermudan_swaption_pay.value(valuation_date, libor_curve, model)
    testCases.print("BERMUDAN BDT PAY VALUE:", valuePay)

    valueRec = bermudan_swaption_rec.value(valuation_date, libor_curve, model)
    testCases.print("BERMUDAN BDT REC VALUE:", valueRec)

    payRec = valuePay - valueRec
    testCases.print("PAY MINUS RECEIVER :", payRec)

    ###########################################################################
    # Now we create the Bermudan swaptions but allow Bermudan exercise
    ###########################################################################

    fixed_leg_type = SwapTypes.PAY
    exercise_type = FinExerciseTypes.BERMUDAN

    bermudan_swaption_pay = IborBermudanSwaption(
        settlement_date, exercise_date, swapMaturityDate, fixed_leg_type,
        exercise_type, swapFixedCoupon, swapFixedFrequencyType,
        swapFixedDayCountType)

    fixed_leg_type = SwapTypes.RECEIVE
    bermudan_swaption_rec = IborBermudanSwaption(
        settlement_date, exercise_date, swapMaturityDate, fixed_leg_type,
        exercise_type, swapFixedCoupon, swapFixedFrequencyType,
        swapFixedDayCountType)

    testCases.banner(
        "======= ZERO VOLATILITY BERMUDAN SWAPTION BERMUDAN EXERCISE BDT MODEL ========"
    )

    # Used BK with constant short-rate volatility
    sigma = 0.000001
    a = 0.01
    model = BDTTree(sigma, num_time_steps)

    testCases.banner("BK MODEL BERMUDAN SWAPTION CLASS BERMUDAN EXERCISE")
    valuePay = bermudan_swaption_pay.value(valuation_date, libor_curve, model)
    testCases.print("BERMUDAN BDT PAY VALUE:", valuePay)

    valueRec = bermudan_swaption_rec.value(valuation_date, libor_curve, model)
    testCases.print("BERMUDAN BDT REC VALUE:", valueRec)

    payRec = valuePay - valueRec
    testCases.print("PAY MINUS RECEIVER :", payRec)

    testCases.banner(
        "======= 20% VOLATILITY BERMUDAN SWAPTION BERMUDAN EXERCISE BDT MODEL ========"
    )

    # Used BK with constant short-rate volatility
    sigma = 0.20
    a = 0.01
    model = BDTTree(sigma, num_time_steps)

    #    print("BDT MODEL BERMUDAN SWAPTION CLASS BERMUDAN EXERCISE")
    valuePay = bermudan_swaption_pay.value(valuation_date, libor_curve, model)
    testCases.print("BERMUDAN BDT PAY VALUE:", valuePay)

    valueRec = bermudan_swaption_rec.value(valuation_date, libor_curve, model)
    testCases.print("BERMUDAN BDT REC VALUE:", valueRec)

    payRec = valuePay - valueRec
    testCases.print("PAY MINUS RECEIVER :", payRec)

    ###########################################################################
    ###########################################################################
    ###########################################################################
    # BDT MODEL
    ###########################################################################
    ###########################################################################
    ###########################################################################

    testCases.banner("=======================================================")
    testCases.banner("=======================================================")
    testCases.banner("======================= HW MODEL ======================")
    testCases.banner("=======================================================")
    testCases.banner("=======================================================")

    testCases.banner("====== 0% VOLATILITY EUROPEAN SWAPTION HW MODEL ======")

    sigma = 0.0000001
    a = 0.1
    num_time_steps = 200
    model = HWTree(sigma, a, num_time_steps)

    valuePay = europeanSwaptionPay.value(valuation_date, libor_curve, model)
    testCases.print("EUROPEAN HW PAY VALUE:", valuePay)

    valueRec = europeanSwaptionRec.value(valuation_date, libor_curve, model)
    testCases.print("EUROPEAN HW REC VALUE:", valueRec)

    payRec = valuePay - valueRec
    testCases.print("PAY MINUS RECEIVER :", payRec)

    testCases.banner("===== 20% VOLATILITY EUROPEAN SWAPTION BDT MODEL ======")

    # Used BK with constant short-rate volatility
    sigma = 0.01
    a = 0.01
    model = HWTree(sigma, a, num_time_steps)

    testCases.banner("HW MODEL SWAPTION CLASS EUROPEAN EXERCISE")

    valuePay = europeanSwaptionPay.value(valuation_date, libor_curve, model)
    testCases.print("EUROPEAN HW PAY VALUE:", valuePay)

    valueRec = europeanSwaptionRec.value(valuation_date, libor_curve, model)
    testCases.print("EUROPEAN HW REC VALUE:", valueRec)

    payRec = valuePay - valueRec
    testCases.print("PAY MINUS RECEIVER :", payRec)

    ###########################################################################

    # Now we create the Bermudan swaptions but only allow European exercise
    fixed_leg_type = SwapTypes.PAY
    exercise_type = FinExerciseTypes.EUROPEAN

    bermudan_swaption_pay = IborBermudanSwaption(
        settlement_date, exercise_date, swapMaturityDate, fixed_leg_type,
        exercise_type, swapFixedCoupon, swapFixedFrequencyType,
        swapFixedDayCountType)

    fixed_leg_type = SwapTypes.RECEIVE
    bermudan_swaption_rec = IborBermudanSwaption(
        settlement_date, exercise_date, swapMaturityDate, fixed_leg_type,
        exercise_type, swapFixedCoupon, swapFixedFrequencyType,
        swapFixedDayCountType)

    testCases.banner(
        "======= 0% VOLATILITY BERMUDAN SWAPTION EUROPEAN EXERCISE HW MODEL ========"
    )

    sigma = 0.000001
    model = HWTree(sigma, a, num_time_steps)

    testCases.banner("BK MODEL BERMUDAN SWAPTION CLASS EUROPEAN EXERCISE")
    valuePay = bermudan_swaption_pay.value(valuation_date, libor_curve, model)
    testCases.print("BERMUDAN BDT PAY VALUE:", valuePay)

    valueRec = bermudan_swaption_rec.value(valuation_date, libor_curve, model)
    testCases.print("BERMUDAN BDT REC VALUE:", valueRec)

    payRec = valuePay - valueRec
    testCases.print("PAY MINUS RECEIVER :", payRec)

    testCases.banner(
        "======= 100bp VOLATILITY BERMUDAN SWAPTION EUROPEAN EXERCISE HW MODEL ========"
    )

    # Used BK with constant short-rate volatility
    sigma = 0.01
    model = HWTree(sigma, a, num_time_steps)

    testCases.banner("BDT MODEL BERMUDAN SWAPTION CLASS EUROPEAN EXERCISE")
    valuePay = bermudan_swaption_pay.value(valuation_date, libor_curve, model)
    testCases.print("BERMUDAN BDT PAY VALUE:", valuePay)

    valueRec = bermudan_swaption_rec.value(valuation_date, libor_curve, model)
    testCases.print("BERMUDAN BDT REC VALUE:", valueRec)

    payRec = valuePay - valueRec
    testCases.print("PAY MINUS RECEIVER :", payRec)

    ###########################################################################
    # Now we create the Bermudan swaptions but allow Bermudan exercise
    ###########################################################################

    fixed_leg_type = SwapTypes.PAY
    exercise_type = FinExerciseTypes.BERMUDAN

    bermudan_swaption_pay = IborBermudanSwaption(
        settlement_date, exercise_date, swapMaturityDate, fixed_leg_type,
        exercise_type, swapFixedCoupon, swapFixedFrequencyType,
        swapFixedDayCountType)

    fixed_leg_type = SwapTypes.RECEIVE
    bermudan_swaption_rec = IborBermudanSwaption(
        settlement_date, exercise_date, swapMaturityDate, fixed_leg_type,
        exercise_type, swapFixedCoupon, swapFixedFrequencyType,
        swapFixedDayCountType)

    testCases.banner(
        "======= ZERO VOLATILITY BERMUDAN SWAPTION BERMUDAN EXERCISE HW MODEL ========"
    )

    # Used BK with constant short-rate volatility
    sigma = 0.000001
    a = 0.01
    model = HWTree(sigma, a, num_time_steps)

    testCases.banner("HW MODEL BERMUDAN SWAPTION CLASS BERMUDAN EXERCISE")
    valuePay = bermudan_swaption_pay.value(valuation_date, libor_curve, model)
    testCases.print("BERMUDAN HW PAY VALUE:", valuePay)

    valueRec = bermudan_swaption_rec.value(valuation_date, libor_curve, model)
    testCases.print("BERMUDAN HW REC VALUE:", valueRec)

    payRec = valuePay - valueRec
    testCases.print("PAY MINUS RECEIVER :", payRec)

    testCases.banner(
        "======= 100bps VOLATILITY BERMUDAN SWAPTION BERMUDAN EXERCISE HW MODEL ========"
    )

    # Used BK with constant short-rate volatility
    sigma = 0.01
    a = 0.01
    model = HWTree(sigma, a, num_time_steps)

    testCases.banner("HW MODEL BERMUDAN SWAPTION CLASS BERMUDAN EXERCISE")
    valuePay = bermudan_swaption_pay.value(valuation_date, libor_curve, model)
    testCases.print("BERMUDAN HW PAY VALUE:", valuePay)

    valueRec = bermudan_swaption_rec.value(valuation_date, libor_curve, model)
    testCases.print("BERMUDAN HW REC VALUE:", valueRec)

    payRec = valuePay - valueRec
    testCases.print("PAY MINUS RECEIVER :", payRec)
コード例 #7
0
def test_pay():
    libor_curve = build_curve(valuation_date)
    swaptionType = SwapTypes.PAY

    k = 0.02
    swaption = IborSwaption(settlement_date, exercise_date, swapMaturityDate,
                            swaptionType, k, swapFixedFrequencyType,
                            swapFixedDayCountType)

    swap1 = swaption.value(valuation_date, libor_curve, model1)
    swap2 = swaption.value(valuation_date, libor_curve, model2)
    swap3 = swaption.value(valuation_date, libor_curve, model3)
    swap4 = swaption.value(valuation_date, libor_curve, model4)
    swap5 = swaption.value(valuation_date, libor_curve, model5)
    swap6 = swaption.value(valuation_date, libor_curve, model6)
    assert round(swap1, 0) == 125087
    assert round(swap2, 0) == 125087
    assert round(swap3, 0) == 125087
    assert round(swap4, 0) == 125087
    assert round(swap5, 0) == 125684
    assert round(swap6, 0) == 124501

    k = 0.035
    swaption = IborSwaption(settlement_date, exercise_date, swapMaturityDate,
                            swaptionType, k, swapFixedFrequencyType,
                            swapFixedDayCountType)

    swap1 = swaption.value(valuation_date, libor_curve, model1)
    swap2 = swaption.value(valuation_date, libor_curve, model2)
    swap3 = swaption.value(valuation_date, libor_curve, model3)
    swap4 = swaption.value(valuation_date, libor_curve, model4)
    swap5 = swaption.value(valuation_date, libor_curve, model5)
    swap6 = swaption.value(valuation_date, libor_curve, model6)
    assert round(swap1, 1) == 62492.6
    assert round(swap2, 1) == 62492.6
    assert round(swap3, 1) == 62492.6
    assert round(swap4, 1) == 62492.8
    assert round(swap5, 1) == 63098.5
    assert round(swap6, 1) == 62307.2

    k = 0.065
    swaption = IborSwaption(settlement_date, exercise_date, swapMaturityDate,
                            swaptionType, k, swapFixedFrequencyType,
                            swapFixedDayCountType)

    swap1 = swaption.value(valuation_date, libor_curve, model1)
    swap2 = swaption.value(valuation_date, libor_curve, model2)
    swap3 = swaption.value(valuation_date, libor_curve, model3)
    swap4 = swaption.value(valuation_date, libor_curve, model4)
    swap5 = swaption.value(valuation_date, libor_curve, model5)
    swap6 = swaption.value(valuation_date, libor_curve, model6)
    assert round(swap1, 4) == 0.0
    assert round(swap2, 4) == 0.0
    assert round(swap3, 1) == 22.1
    assert round(swap4, 1) == 60.3
    assert round(swap5, 4) == 0.0
    assert round(swap6, 4) == 0.0
コード例 #8
0
def test_receive():
    swaptionType = SwapTypes.RECEIVE

    k = 0.02
    swaption = IborSwaption(settlement_date, exercise_date, swapMaturityDate,
                            swaptionType, k, swapFixedFrequencyType,
                            swapFixedDayCountType)

    swap1 = swaption.value(valuation_date, libor_curve, model1)
    swap2 = swaption.value(valuation_date, libor_curve, model2)
    swap3 = swaption.value(valuation_date, libor_curve, model3)
    swap4 = swaption.value(valuation_date, libor_curve, model4)
    swap5 = swaption.value(valuation_date, libor_curve, model5)
    swap6 = swaption.value(valuation_date, libor_curve, model6)
    assert round(swap1, 4) == 0.0
    assert round(swap2, 4) == 0.0
    assert round(swap3, 4) == 0.0
    assert round(swap4, 4) == 0.0046
    assert round(swap5, 4) == 0.0
    assert round(swap6, 4) == 0.0

    k = 0.05
    swaption = IborSwaption(settlement_date, exercise_date, swapMaturityDate,
                            swaptionType, k, swapFixedFrequencyType,
                            swapFixedDayCountType)

    swap1 = swaption.value(valuation_date, libor_curve, model1)
    swap2 = swaption.value(valuation_date, libor_curve, model2)
    swap3 = swaption.value(valuation_date, libor_curve, model3)
    swap4 = swaption.value(valuation_date, libor_curve, model4)
    swap5 = swaption.value(valuation_date, libor_curve, model5)
    swap6 = swaption.value(valuation_date, libor_curve, model6)
    assert round(swap1, 1) == 101.8
    assert round(swap2, 1) == 101.8
    assert round(swap3, 1) == 4945.4
    assert round(swap4, 1) == 5392.6
    assert round(swap5, 4) == 0.0
    assert round(swap6, 1) == 762.5

    k = 0.08
    swaption = IborSwaption(settlement_date, exercise_date, swapMaturityDate,
                            swaptionType, k, swapFixedFrequencyType,
                            swapFixedDayCountType)

    swap1 = swaption.value(valuation_date, libor_curve, model1)
    swap2 = swaption.value(valuation_date, libor_curve, model2)
    swap3 = swaption.value(valuation_date, libor_curve, model3)
    swap4 = swaption.value(valuation_date, libor_curve, model4)
    swap5 = swaption.value(valuation_date, libor_curve, model5)
    swap6 = swaption.value(valuation_date, libor_curve, model6)
    assert round(swap1, 1) == 125290.5
    assert round(swap2, 1) == 125290.5
    assert round(swap3, 1) == 125291.1
    assert round(swap4, 1) == 125293.6
    assert round(swap5, 1) == 124657.1
    assert round(swap6, 1) == 124274.9