コード例 #1
0
def test_fpgadataflow_fclayer_npysim(idt, wdt, act, nf, sf, mw, mh):
    if nf == -1:
        nf = mh
    if sf == -1:
        sf = mw
    pe = mh // nf
    simd = mw // sf
    assert mh % pe == 0
    assert mw % sf == 0
    # generate weights
    W = gen_finn_dt_tensor(wdt, (mw, mh))
    # generate input data
    x = gen_finn_dt_tensor(idt, (1, mw))
    if act is None:
        # no activation, produce accumulators
        T = None
        tdt = None
        if wdt == DataType.BIPOLAR and idt == DataType.BIPOLAR:
            odt = DataType.UINT32
        else:
            odt = DataType.INT32
    else:
        odt = act
        (min, max) = calculate_signed_dot_prod_range(idt, wdt, mw)
        n_steps = act.get_num_possible_values() - 1
        T = np.random.randint(min, max - 1, (mh, n_steps)).astype(np.float32)
        # provide non-decreasing thresholds
        T = np.sort(T, axis=1)
        # generate thresholds for activation
        if wdt == DataType.BIPOLAR and idt == DataType.BIPOLAR:
            tdt = DataType.UINT32
            # bias thresholds to be positive
            T = np.ceil((T + mw) / 2)
            assert (T >= 0).all()
        else:
            tdt = DataType.INT32
    model = make_single_fclayer_modelwrapper(W, pe, simd, wdt, idt, odt, T, tdt)
    model = model.transform(SetExecMode("npysim"))
    model = model.transform(CodeGen_npysim())
    model = model.transform(Compile())
    # prepare input data
    input_dict = prepare_inputs(x, idt, wdt)
    if wdt == DataType.BIPOLAR and idt == DataType.BIPOLAR:
        # convert inputs to binary and use xnorpopcountmatmul
        y = xp.xnorpopcountmatmul((x + 1) / 2, (W + 1) / 2)
    else:
        y = np.matmul(x, W)
    if T is not None:
        y = multithreshold(y, T)
        if act == DataType.BIPOLAR:
            # binary to bipolar
            y = 2 * y - 1
        else:
            # signed offset
            y += act.min()
    oshape = model.get_tensor_shape("outp")
    y_expected = y.reshape(oshape)
    # execute model
    y_produced = oxe.execute_onnx(model, input_dict)["outp"]
    assert (y_produced.reshape(y_expected.shape) == y_expected).all(), "npysim failed"
コード例 #2
0
def test_fpgadataflow_fclayer_large_depth_decoupled_mode_rtlsim(
    mem_mode, idt, wdt, act, nf, sf, mw, mh
):
    if nf == -1:
        nf = mh
    if sf == -1:
        sf = mw
    pe = mh // nf
    simd = mw // sf
    assert mh % pe == 0
    assert mw % sf == 0
    # generate weights
    W = gen_finn_dt_tensor(wdt, (mw, mh))
    # generate input data
    x = gen_finn_dt_tensor(idt, (1, mw))
    if act is None:
        # no activation, produce accumulators
        T = None
        tdt = None
        if wdt == DataType.BIPOLAR and idt == DataType.BIPOLAR:
            odt = DataType.UINT32
        else:
            odt = DataType.INT32
    else:
        odt = act
        (min, max) = calculate_signed_dot_prod_range(idt, wdt, mw)
        n_steps = act.get_num_possible_values() - 1
        T = np.random.randint(min, max - 1, (mh, n_steps)).astype(np.float32)
        # provide non-decreasing thresholds
        T = np.sort(T, axis=1)
        # generate thresholds for activation
        if wdt == DataType.BIPOLAR and idt == DataType.BIPOLAR:
            tdt = DataType.UINT32
            # bias thresholds to be positive
            T = np.ceil((T + mw) / 2)
            assert (T >= 0).all()
        else:
            tdt = DataType.INT32
    model = make_single_fclayer_modelwrapper(W, pe, simd, wdt, idt, odt, T, tdt)
    for node in model.graph.node:
        # lookup op_type in registry of CustomOps
        inst = getCustomOp(node)
        inst.set_nodeattr("mem_mode", mem_mode)

    # prepare input data
    input_dict = prepare_inputs(x, idt, wdt)
    if wdt == DataType.BIPOLAR and idt == DataType.BIPOLAR:
        # convert inputs to binary and use xnorpopcountmatmul
        y = xp.xnorpopcountmatmul((x + 1) / 2, (W + 1) / 2)
    else:
        y = np.matmul(x, W)
    if T is not None:
        y = multithreshold(y, T)
        if act == DataType.BIPOLAR:
            # binary to bipolar
            y = 2 * y - 1
        else:
            # signed offset
            y += act.min()
    oshape = model.get_tensor_shape("outp")
    y_expected = y.reshape(oshape)
    # TODO split up into several dependent tests -- need to check how this
    # works for parametrized tests...
    model = model.transform(SetExecMode("rtlsim"))
    model = model.transform(GiveUniqueNodeNames())
    model = model.transform(PrepareIP("xc7z020clg400-1", 5))
    model = model.transform(HLSSynthIP())
    model = model.transform(PrepareRTLSim())
    y_produced = oxe.execute_onnx(model, input_dict)["outp"]
    assert (y_produced.reshape(y_expected.shape) == y_expected).all(), "rtlsim failed"

    hls_synt_res_est = model.analysis(hls_synth_res_estimation)
    assert "StreamingFCLayer_Batch_0" in hls_synt_res_est

    node = model.get_nodes_by_op_type("StreamingFCLayer_Batch")[0]
    inst = getCustomOp(node)
    cycles_rtlsim = inst.get_nodeattr("cycles_rtlsim")
    exp_cycles_dict = model.analysis(exp_cycles_per_layer)
    exp_cycles = exp_cycles_dict[node.name]
    assert np.isclose(exp_cycles, cycles_rtlsim, atol=15)
    assert exp_cycles != 0