def run_scikit_digits(epochs=0, layers=0, neuron_count=0): """ Run Handwritten Digits dataset from Scikit-Learn. Learning set is split into 70% for training, 15% for testing, and 15% for validation. Parameters ---------- epochs : int Number of iterations of the the traininng loop for the whole dataset layers : int Number of layers (not counting the input layer, but does count output layer) neuron_count : list The number of neurons in each of the layers (in order), does not count the bias term Attributes ---------- target_values : list The possible values for each training vector """ # Imported from linear_neuron temp_digits = datasets.load_digits() digits = utils.resample(temp_digits.data, random_state=3) temp_answers = utils.resample(temp_digits.target, random_state=3) # images = utils.resample(temp_digits.images, random_state=0) num_of_training_vectors = 1250 answers, answers_to_test, validation_answers = ( temp_answers[:num_of_training_vectors], temp_answers[num_of_training_vectors : num_of_training_vectors + 260], temp_answers[num_of_training_vectors + 260 :], ) training_set, testing_set, validation_set = ( digits[:num_of_training_vectors], digits[num_of_training_vectors : num_of_training_vectors + 260], digits[num_of_training_vectors + 260 :], ) ########### # network.visualization(training_set[10], answers[10]) # network.visualization(training_set[11], answers[11]) # network.visualization(training_set[12], answers[12]) network = Network(layers, neuron_count, training_set[0]) network.train(training_set, answers, epochs) f = open("my_net.pickle", "wb") # fr = open('my_net.pickle', 'rb') dill.dump(network, f) # network = pickle.load(fr) # fr.close() f.close() # guess_list = network.run_unseen(testing_set) return network.run_unseen(testing_set)
def run_mnist(run_num, epochs=0, layers=0, neuron_count=0): """ Run Mnist dataset and output a guess list on the Kaggle test_set Parameters ---------- epochs : int Number of iterations of the the traininng loop for the whole dataset layers : int Number of layers (not counting the input layer, but does count output layer) neuron_count : list The number of neurons in each of the layers (in order), does not count the bias term Attributes ---------- """ ans_train = [] train_set = [] with open('train.csv', 'r') as f: reader = csv.reader(f) t = list(reader) train = [[int(x) for x in y] for y in t[1:]] ans_train = [x[0] for x in train] train_set = [x[1:] for x in train] ans_train.pop(0) train_set.pop(0) network = Network(layers, neuron_count, train_set[1]) network.train(train_set, ans_train, epochs) guess_list = network.run_unseen(train_set[37800:]) print('Test Set') test_report = network.report_results(guess_list, ans_train[37800:]) file_name = 'finnegan/my_net_' + str(run_num) + '.pickle' g = open(file_name, 'wb') pickle.dump(network, g, protocol=4) g.close() file_name_2 = 'finnegan/my_net_report_' + str(run_num) + '.txt' h = open(file_name_2, 'w') details = 'Neuron Counts: ' + str(neuron_count) + '\n' details_2 = 'Test Report: ' + test_report + '\n' h.write(details) h.write(details_2) h.close() return None
def run_mnist(epochs, layers, neuron_count): """ Run Mnist dataset and output a guess list on the Kaggle test_set Parameters ---------- epochs : int Number of iterations of the the traininng loop for the whole dataset layers : int Number of layers (not counting the input layer, but does count output layer) neuron_count : list The number of neurons in each of the layers (in order), does not count the bias term Attributes ---------- target_values : list The possible values for each training vector """ with open('train.csv', 'r') as f: reader = csv.reader(f) t = list(reader) train = [[int(x) for x in y] for y in t[1:]] with open('test.csv', 'r') as f: reader = csv.reader(f) raw_nums = list(reader) test_set = [[int(x) for x in y] for y in raw_nums[1:]] ans_train = [x[0] for x in train] train_set = [x[1:] for x in train] ans_train.pop(0) train_set.pop(0) train_set = utils.resample(train_set, random_state=2) ans_train = utils.resample(ans_train, random_state=2) network = Network(layers, neuron_count, train_set[0]) network.train(train_set, ans_train, epochs) # For validation purposes # guess_list = network.run_unseen(train_set[4000:4500]) # network.report_results(guess_list, ans_train[4000:4500]) # guess_list = network.run_unseen(train_set[4500:5000]) # network.report_results(guess_list, ans_train[4500:5000]) guess_list = network.run_unseen(test_set) with open('digits.txt', 'w') as d: for elem in guess_list: d.write(str(elem) + '\n')
def run_mnist(epochs, layers, neuron_count): """ Run Mnist dataset and output a guess list on the Kaggle test_set Parameters ---------- epochs : int Number of iterations of the the traininng loop for the whole dataset layers : int Number of layers (not counting the input layer, but does count output layer) neuron_count : list The number of neurons in each of the layers (in order), does not count the bias term Attributes ---------- target_values : list The possible values for each training vector """ with open("train.csv", "r") as f: reader = csv.reader(f) t = list(reader) train = [[int(x) for x in y] for y in t[1:]] with open("test.csv", "r") as f: reader = csv.reader(f) raw_nums = list(reader) test_set = [[int(x) for x in y] for y in raw_nums[1:]] ans_train = [x[0] for x in train] train_set = [x[1:] for x in train] ans_train.pop(0) train_set.pop(0) train_set = utils.resample(train_set, random_state=2) ans_train = utils.resample(ans_train, random_state=2) network = Network(layers, neuron_count, train_set[0]) network.train(train_set, ans_train, epochs) # For validation purposes # guess_list = network.run_unseen(train_set[4000:4500]) # network.report_results(guess_list, ans_train[4000:4500]) # guess_list = network.run_unseen(train_set[4500:5000]) # network.report_results(guess_list, ans_train[4500:5000]) guess_list = network.run_unseen(test_set) with open("digits.txt", "w") as d: for elem in guess_list: d.write(str(elem) + "\n")
def run_scikit_digits(epochs=0, layers=0, neuron_count=0): """ Run Handwritten Digits dataset from Scikit-Learn. Learning set is split into 70% for training, 15% for testing, and 15% for validation. Parameters ---------- epochs : int Number of iterations of the the traininng loop for the whole dataset layers : int Number of layers (not counting the input layer, but does count output layer) neuron_count : list The number of neurons in each of the layers (in order), does not count the bias term Attributes ---------- target_values : list The possible values for each training vector """ # Imported from linear_neuron temp_digits = datasets.load_digits() digits = utils.resample(temp_digits.data, random_state=3) temp_answers = utils.resample(temp_digits.target, random_state=3) # images = utils.resample(temp_digits.images, random_state=0) num_of_training_vectors = 1250 answers, answers_to_test, validation_answers = temp_answers[:num_of_training_vectors], temp_answers[ num_of_training_vectors:num_of_training_vectors + 260], temp_answers[num_of_training_vectors + 260:] training_set, testing_set, validation_set = digits[:num_of_training_vectors], digits[ num_of_training_vectors:num_of_training_vectors + 260], digits[num_of_training_vectors + 260:] ########### # network.visualization(training_set[10], answers[10]) # network.visualization(training_set[11], answers[11]) # network.visualization(training_set[12], answers[12]) network = Network(layers, neuron_count, training_set[0]) network.train(training_set, answers, epochs) f = open('my_net.pickle', 'wb') # fr = open('my_net.pickle', 'rb') dill.dump(network, f) # network = pickle.load(fr) # fr.close() f.close() # guess_list = network.run_unseen(testing_set) return network.run_unseen(testing_set)
def run_mnist(run_num, epochs=0, layers=0, neuron_count=0): """ Run affNIST dataset and output a guess list on test and validation sets. Dumps a pickle of the trained network state and a results file for choosing the best parameters. Parameters ---------- epochs : int Number of iterations of the the traininng loop for the whole dataset layers : int Number of layers (not counting the input layer, but does count output layer) neuron_count : list The number of neurons in each of the layers (in order), does not count the bias term Attributes ---------- """ dataset = loadmat('1.mat') ans_train = dataset['affNISTdata']['label_int'] train_set = dataset['affNISTdata']['image'].transpose() dataset2 = loadmat('2.mat') ans_train2 = dataset2['affNISTdata']['label_int'] train_set2 = dataset2['affNISTdata']['image'].transpose() ans_train = np.hstack((ans_train, ans_train2)) train_set = np.vstack((train_set, train_set2)) network = Network(layers, neuron_count, train_set[1]) network.train(train_set, ans_train, epochs) dataset = loadmat('3.mat') ans_train = dataset['affNISTdata']['label_int'] train_set = dataset['affNISTdata']['image'].transpose() guess_list = network.run_unseen(train_set) print('Test Set') test_report = network.report_results(guess_list, ans_train) dataset = loadmat('4.mat') ans_train = dataset['affNISTdata']['label_int'] train_set = dataset['affNISTdata']['image'].transpose() guess_list = network.run_unseen(train_set) print('Validation Set') val_report = network.report_results(guess_list, ans_train) file_name = 'finnegan/my_net_' + str(run_num) + '.pickle' g = open(file_name, 'wb') pickle.dump(network, g, protocol=4) g.close() file_name_2 = 'finnegan/my_net_report_' + str(run_num) + '.txt' h = open(file_name_2, 'w') details = 'Neuron Counts: ' + str(neuron_count) + '\n' details_2 = 'Test Report: ' + test_report + '\n' details_3 = 'Validation Report: ' + val_report + '\n' h.write(details) h.write(details_2) h.write(details_3) h.close() return None