def assemble_mixed_mass_matrix(V_A, V_B): """ Construct the mixed mass matrix of two function spaces, using the TrialFunction from V_A and the TestFunction from V_B. """ if len(V_A) > 1 or len(V_B) > 1: raise NotImplementedError( "Sorry, only implemented for non-mixed spaces") if V_A.ufl_element().mapping() != "identity" or V_B.ufl_element().mapping( ) != "identity": msg = """ Sorry, only implemented for affine maps for now. To do non-affine, we'd need to import much more of the assembly engine of UFL/TSFC/etc to do the assembly on each supermesh cell. """ raise NotImplementedError(msg) mesh_A = V_A.mesh() mesh_B = V_B.mesh() dim = mesh_A.geometric_dimension() assert dim == mesh_B.geometric_dimension() assert dim == mesh_A.topological_dimension() assert dim == mesh_B.topological_dimension() (mh_A, level_A) = get_level(mesh_A) (mh_B, level_B) = get_level(mesh_B) if mesh_A is mesh_B: def likely(cell_A): return [cell_A] else: if (mh_A is None or mh_B is None) or (mh_A is not mh_B): # No mesh hierarchy structure, call libsupermesh for # intersection finding intersections = intersection_finder(mesh_A, mesh_B) likely = intersections.__getitem__ else: # We do have a mesh hierarchy, use it if abs(level_A - level_B) > 1: raise NotImplementedError( "Only works for transferring between adjacent levels for now." ) # What are the cells of B that (probably) intersect with a given cell in A? if level_A > level_B: cell_map = mh_A.fine_to_coarse_cells[level_A] def likely(cell_A): return cell_map[cell_A] elif level_A < level_B: cell_map = mh_A.coarse_to_fine_cells[level_A] def likely(cell_A): return cell_map[cell_A] assert V_A.value_size == V_B.value_size orig_value_size = V_A.value_size if V_A.value_size > 1: V_A = firedrake.FunctionSpace(mesh_A, V_A.ufl_element().sub_elements()[0]) if V_B.value_size > 1: V_B = firedrake.FunctionSpace(mesh_B, V_B.ufl_element().sub_elements()[0]) assert V_A.value_size == 1 assert V_B.value_size == 1 preallocator = PETSc.Mat().create(comm=mesh_A.comm) preallocator.setType(PETSc.Mat.Type.PREALLOCATOR) rset = V_B.dof_dset cset = V_A.dof_dset nrows = rset.layout_vec.getSizes() ncols = cset.layout_vec.getSizes() preallocator.setLGMap(rmap=rset.scalar_lgmap, cmap=cset.scalar_lgmap) preallocator.setSizes(size=(nrows, ncols), bsize=1) preallocator.setUp() zeros = numpy.zeros((V_B.cell_node_map().arity, V_A.cell_node_map().arity), dtype=ScalarType) for cell_A, dofs_A in enumerate(V_A.cell_node_map().values): for cell_B in likely(cell_A): dofs_B = V_B.cell_node_map().values_with_halo[cell_B, :] preallocator.setValuesLocal(dofs_B, dofs_A, zeros) preallocator.assemble() dnnz, onnz = get_preallocation(preallocator, nrows[0]) # Unroll from block to AIJ dnnz = dnnz * cset.cdim dnnz = numpy.repeat(dnnz, rset.cdim) onnz = onnz * cset.cdim onnz = numpy.repeat(onnz, cset.cdim) preallocator.destroy() assert V_A.value_size == V_B.value_size rdim = V_B.dof_dset.cdim cdim = V_A.dof_dset.cdim # # Preallocate M_AB. # mat = PETSc.Mat().create(comm=mesh_A.comm) mat.setType(PETSc.Mat.Type.AIJ) rsizes = tuple(n * rdim for n in nrows) csizes = tuple(c * cdim for c in ncols) mat.setSizes(size=(rsizes, csizes), bsize=(rdim, cdim)) mat.setPreallocationNNZ((dnnz, onnz)) mat.setLGMap(rmap=rset.lgmap, cmap=cset.lgmap) # TODO: Boundary conditions not handled. mat.setOption(mat.Option.IGNORE_OFF_PROC_ENTRIES, False) mat.setOption(mat.Option.NEW_NONZERO_ALLOCATION_ERR, True) mat.setOption(mat.Option.KEEP_NONZERO_PATTERN, True) mat.setOption(mat.Option.UNUSED_NONZERO_LOCATION_ERR, False) mat.setOption(mat.Option.IGNORE_ZERO_ENTRIES, True) mat.setUp() evaluate_kernel_A = compile_element(ufl.Coefficient(V_A), name="evaluate_kernel_A") evaluate_kernel_B = compile_element(ufl.Coefficient(V_B), name="evaluate_kernel_B") # We only need one of these since we assume that the two meshes both have CG1 coordinates to_reference_kernel = to_reference_coordinates( mesh_A.coordinates.ufl_element()) if dim == 2: reference_mesh = UnitTriangleMesh(comm=COMM_SELF) else: reference_mesh = UnitTetrahedronMesh(comm=COMM_SELF) evaluate_kernel_S = compile_element(ufl.Coefficient( reference_mesh.coordinates.function_space()), name="evaluate_kernel_S") V_S_A = FunctionSpace(reference_mesh, V_A.ufl_element()) V_S_B = FunctionSpace(reference_mesh, V_B.ufl_element()) M_SS = assemble(inner(TrialFunction(V_S_A), TestFunction(V_S_B)) * dx) M_SS = M_SS.M.handle[:, :] node_locations_A = utils.physical_node_locations( V_S_A).dat.data_ro_with_halos node_locations_B = utils.physical_node_locations( V_S_B).dat.data_ro_with_halos num_nodes_A = node_locations_A.shape[0] num_nodes_B = node_locations_B.shape[0] to_reference_kernel = to_reference_coordinates( mesh_A.coordinates.ufl_element()) supermesh_kernel_str = """ #include "libsupermesh-c.h" #include <petsc.h> %(to_reference)s %(evaluate_S)s %(evaluate_A)s %(evaluate_B)s #define complex_mode %(complex_mode)s #define PrintInfo(...) do { if (PetscLogPrintInfo) printf(__VA_ARGS__); } while (0) static void print_array(PetscScalar *arr, int d) { for(int j=0; j<d; j++) PrintInfo(stderr, "%%+.2f ", arr[j]); } static void print_coordinates(PetscScalar *simplex, int d) { for(int i=0; i<d+1; i++) { PrintInfo("\t"); print_array(&simplex[d*i], d); PrintInfo("\\n"); } } #if complex_mode static void seperate_real_and_imag(PetscScalar *simplex, double *real_simplex, double *imag_simplex, int d) { for(int i=0; i<d+1; i++) { for(int j=0; j<d; j++) { real_simplex[d*i+j] = creal(simplex[d*i+j]); imag_simplex[d*i+j] = cimag(simplex[d*i+j]); } } } static void merge_back_to_simplex(PetscScalar* simplex, double* real_simplex, double* imag_simplex, int d) { print_coordinates(simplex,d); for(int i=0; i<d+1; i++) { for(int j=0; j<d; j++) { simplex[d*i+j] = real_simplex[d*i+j]+imag_simplex[d*i+j]*_Complex_I; } } } #endif int supermesh_kernel(PetscScalar* simplex_A, PetscScalar* simplex_B, PetscScalar* simplices_C, PetscScalar* nodes_A, PetscScalar* nodes_B, PetscScalar* M_SS, PetscScalar* outptr, int num_ele) { #define d %(dim)s #define num_nodes_A %(num_nodes_A)s #define num_nodes_B %(num_nodes_B)s double simplex_ref_measure; PrintInfo("simplex_A coordinates\\n"); print_coordinates(simplex_A, d); PrintInfo("simplex_B coordinates\\n"); print_coordinates(simplex_B, d); int num_elements = num_ele; if (d == 2) simplex_ref_measure = 0.5; else if (d == 3) simplex_ref_measure = 1.0/6; PetscScalar R_AS[num_nodes_A][num_nodes_A]; PetscScalar R_BS[num_nodes_B][num_nodes_B]; PetscScalar coeffs_A[%(num_nodes_A)s] = {0.}; PetscScalar coeffs_B[%(num_nodes_B)s] = {0.}; PetscScalar reference_nodes_A[num_nodes_A][d]; PetscScalar reference_nodes_B[num_nodes_B][d]; #if complex_mode double real_simplex_A[d*(d+1)]; double imag_simplex_A[d*(d+1)]; seperate_real_and_imag(simplex_A, real_simplex_A, imag_simplex_A, d); double real_simplex_B[d*(d+1)]; double imag_simplex_B[d*(d+1)]; seperate_real_and_imag(simplex_B, real_simplex_B, imag_simplex_B, d); double real_simplices_C[num_elements*d*(d+1)]; double imag_simplices_C[num_elements*d*(d+1)]; for (int ii=0; ii<num_elements*d*(d+1); ++ii) imag_simplices_C[ii] = 0.; %(libsupermesh_intersect_simplices)s(real_simplex_A, real_simplex_B, real_simplices_C, &num_elements); merge_back_to_simplex(simplex_A, real_simplex_A, imag_simplex_A, d); merge_back_to_simplex(simplex_B, real_simplex_B, imag_simplex_B, d); for(int s=0; s<num_elements; s++) { PetscScalar* simplex_C = &simplices_C[s * d * (d+1)]; double* real_simplex_C = &real_simplices_C[s * d * (d+1)]; double* imag_simplex_C = &imag_simplices_C[s * d * (d+1)]; merge_back_to_simplex(simplex_C, real_simplex_C, imag_simplex_C, d); } #else %(libsupermesh_intersect_simplices)s(simplex_A, simplex_B, simplices_C, &num_elements); #endif PrintInfo("Supermesh consists of %%i elements\\n", num_elements); // would like to do this //PetscScalar MAB[%(num_nodes_A)s][%(num_nodes_B)s] = (PetscScalar (*)[%(num_nodes_B)s])outptr; // but have to do this instead because we don't grok C PetscScalar (*MAB)[num_nodes_A] = (PetscScalar (*)[num_nodes_A])outptr; PetscScalar (*MSS)[num_nodes_A] = (PetscScalar (*)[num_nodes_A])M_SS; // note the underscore for ( int i = 0; i < num_nodes_B; i++ ) { for (int j = 0; j < num_nodes_A; j++) { MAB[i][j] = 0.0; } } for(int s=0; s<num_elements; s++) { PetscScalar* simplex_S = &simplices_C[s * d * (d+1)]; double simplex_S_measure; #if complex_mode double real_simplex_S[d*(d+1)]; double imag_simplex_S[d*(d+1)]; seperate_real_and_imag(simplex_S, real_simplex_S, imag_simplex_S, d); %(libsupermesh_simplex_measure)s(real_simplex_S, &simplex_S_measure); merge_back_to_simplex(simplex_S, real_simplex_S, imag_simplex_S, d); #else %(libsupermesh_simplex_measure)s(simplex_S, &simplex_S_measure); #endif PrintInfo("simplex_S coordinates with measure %%f\\n", simplex_S_measure); print_coordinates(simplex_S, d); PrintInfo("Start mapping nodes for V_A\\n"); PetscScalar physical_nodes_A[num_nodes_A][d]; for(int n=0; n < num_nodes_A; n++) { PetscScalar* reference_node_location = &nodes_A[n*d]; PetscScalar* physical_node_location = physical_nodes_A[n]; for (int j=0; j < d; j++) physical_node_location[j] = 0.0; pyop2_kernel_evaluate_kernel_S(physical_node_location, simplex_S, reference_node_location); PrintInfo("\\tNode "); print_array(reference_node_location, d); PrintInfo(" mapped to "); print_array(physical_node_location, d); PrintInfo("\\n"); } PrintInfo("Start mapping nodes for V_B\\n"); PetscScalar physical_nodes_B[num_nodes_B][d]; for(int n=0; n < num_nodes_B; n++) { PetscScalar* reference_node_location = &nodes_B[n*d]; PetscScalar* physical_node_location = physical_nodes_B[n]; for (int j=0; j < d; j++) physical_node_location[j] = 0.0; pyop2_kernel_evaluate_kernel_S(physical_node_location, simplex_S, reference_node_location); PrintInfo("\\tNode "); print_array(reference_node_location, d); PrintInfo(" mapped to "); print_array(physical_node_location, d); PrintInfo("\\n"); } PrintInfo("==========================================================\\n"); PrintInfo("Start pulling back dof from S into reference space for A.\\n"); for(int n=0; n < num_nodes_A; n++) { for(int i=0; i<d; i++) reference_nodes_A[n][i] = 0.; to_reference_coords_kernel(reference_nodes_A[n], physical_nodes_A[n], simplex_A); PrintInfo("Pulling back "); print_array(physical_nodes_A[n], d); PrintInfo(" to "); print_array(reference_nodes_A[n], d); PrintInfo("\\n"); } PrintInfo("Start pulling back dof from S into reference space for B.\\n"); for(int n=0; n < num_nodes_B; n++) { for(int i=0; i<d; i++) reference_nodes_B[n][i] = 0.; to_reference_coords_kernel(reference_nodes_B[n], physical_nodes_B[n], simplex_B); PrintInfo("Pulling back "); print_array(physical_nodes_B[n], d); PrintInfo(" to "); print_array(reference_nodes_B[n], d); PrintInfo("\\n"); } PrintInfo("Start evaluating basis functions of V_A at dofs for V_A on S\\n"); for(int i=0; i<num_nodes_A; i++) { coeffs_A[i] = 1.; for(int j=0; j<num_nodes_A; j++) { R_AS[i][j] = 0.; pyop2_kernel_evaluate_kernel_A(&R_AS[i][j], coeffs_A, reference_nodes_A[j]); } print_array(R_AS[i], num_nodes_A); PrintInfo("\\n"); coeffs_A[i] = 0.; } PrintInfo("Start evaluating basis functions of V_B at dofs for V_B on S\\n"); for(int i=0; i<num_nodes_B; i++) { coeffs_B[i] = 1.; for(int j=0; j<num_nodes_B; j++) { R_BS[i][j] = 0.; pyop2_kernel_evaluate_kernel_B(&R_BS[i][j], coeffs_B, reference_nodes_B[j]); } print_array(R_BS[i], num_nodes_B); PrintInfo("\\n"); coeffs_B[i] = 0.; } PrintInfo("Start doing the matmatmat mult\\n"); for ( int i = 0; i < num_nodes_B; i++ ) { for (int j = 0; j < num_nodes_A; j++) { for ( int k = 0; k < num_nodes_B; k++) { for ( int l = 0; l < num_nodes_A; l++) { MAB[i][j] += (simplex_S_measure/simplex_ref_measure) * R_BS[i][k] * MSS[k][l] * R_AS[j][l]; } } } } } return num_elements; } """ % { "evaluate_S": str(evaluate_kernel_S), "evaluate_A": str(evaluate_kernel_A), "evaluate_B": str(evaluate_kernel_B), "to_reference": str(to_reference_kernel), "num_nodes_A": num_nodes_A, "num_nodes_B": num_nodes_B, "libsupermesh_simplex_measure": "libsupermesh_triangle_area" if dim == 2 else "libsupermesh_tetrahedron_volume", "libsupermesh_intersect_simplices": "libsupermesh_intersect_tris_real" if dim == 2 else "libsupermesh_intersect_tets_real", "dim": dim, "complex_mode": 1 if complex_mode else 0 } dirs = get_petsc_dir() + (sys.prefix, ) includes = ["-I%s/include" % d for d in dirs] libs = ["-L%s/lib" % d for d in dirs] libs = libs + ["-Wl,-rpath,%s/lib" % d for d in dirs] + ["-lpetsc", "-lsupermesh"] lib = load(supermesh_kernel_str, "c", "supermesh_kernel", cppargs=includes, ldargs=libs, argtypes=[ ctypes.c_voidp, ctypes.c_voidp, ctypes.c_voidp, ctypes.c_voidp, ctypes.c_voidp, ctypes.c_voidp, ctypes.c_voidp ], restype=ctypes.c_int) ammm(V_A, V_B, likely, node_locations_A, node_locations_B, M_SS, ctypes.addressof(lib), mat) if orig_value_size == 1: return mat else: (lrows, grows), (lcols, gcols) = mat.getSizes() lrows *= orig_value_size grows *= orig_value_size lcols *= orig_value_size gcols *= orig_value_size size = ((lrows, grows), (lcols, gcols)) context = BlockMatrix(mat, orig_value_size) blockmat = PETSc.Mat().createPython(size, context=context, comm=mat.comm) blockmat.setUp() return blockmat
def assemble_mixed_mass_matrix(V_A, V_B): """ Construct the mixed mass matrix of two function spaces, using the TrialFunction from V_A and the TestFunction from V_B. """ if len(V_A) > 1 or len(V_B) > 1: raise NotImplementedError("Sorry, only implemented for non-mixed spaces") if V_A.ufl_element().mapping() != "identity" or V_B.ufl_element().mapping() != "identity": msg = """ Sorry, only implemented for affine maps for now. To do non-affine, we'd need to import much more of the assembly engine of UFL/TSFC/etc to do the assembly on each supermesh cell. """ raise NotImplementedError(msg) mesh_A = V_A.mesh() mesh_B = V_B.mesh() dim = mesh_A.geometric_dimension() assert dim == mesh_B.geometric_dimension() assert dim == mesh_A.topological_dimension() assert dim == mesh_B.topological_dimension() (mh_A, level_A) = get_level(mesh_A) (mh_B, level_B) = get_level(mesh_B) if mesh_A is mesh_B: def likely(cell_A): return [cell_A] else: if (mh_A is None or mh_B is None) or (mh_A is not mh_B): # No mesh hierarchy structure, call libsupermesh for # intersection finding intersections = intersection_finder(mesh_A, mesh_B) likely = intersections.__getitem__ else: # We do have a mesh hierarchy, use it if abs(level_A - level_B) > 1: raise NotImplementedError("Only works for transferring between adjacent levels for now.") # What are the cells of B that (probably) intersect with a given cell in A? if level_A > level_B: cell_map = mh_A.fine_to_coarse_cells[level_A] def likely(cell_A): return cell_map[cell_A] elif level_A < level_B: cell_map = mh_A.coarse_to_fine_cells[level_A] def likely(cell_A): return cell_map[cell_A] assert V_A.value_size == V_B.value_size orig_value_size = V_A.value_size if V_A.value_size > 1: V_A = firedrake.FunctionSpace(mesh_A, V_A.ufl_element().sub_elements()[0]) if V_B.value_size > 1: V_B = firedrake.FunctionSpace(mesh_B, V_B.ufl_element().sub_elements()[0]) assert V_A.value_size == 1 assert V_B.value_size == 1 preallocator = PETSc.Mat().create(comm=mesh_A.comm) preallocator.setType(PETSc.Mat.Type.PREALLOCATOR) rset = V_B.dof_dset cset = V_A.dof_dset nrows = rset.layout_vec.getSizes() ncols = cset.layout_vec.getSizes() preallocator.setLGMap(rmap=rset.scalar_lgmap, cmap=cset.scalar_lgmap) preallocator.setSizes(size=(nrows, ncols), bsize=1) preallocator.setUp() zeros = numpy.zeros((V_B.cell_node_map().arity, V_A.cell_node_map().arity), dtype=ScalarType) for cell_A, dofs_A in enumerate(V_A.cell_node_map().values): for cell_B in likely(cell_A): dofs_B = V_B.cell_node_map().values_with_halo[cell_B, :] preallocator.setValuesLocal(dofs_B, dofs_A, zeros) preallocator.assemble() dnnz, onnz = get_preallocation(preallocator, nrows[0]) # Unroll from block to AIJ dnnz = dnnz * cset.cdim dnnz = numpy.repeat(dnnz, rset.cdim) onnz = onnz * cset.cdim onnz = numpy.repeat(onnz, cset.cdim) preallocator.destroy() assert V_A.value_size == V_B.value_size rdim = V_B.dof_dset.cdim cdim = V_A.dof_dset.cdim # # Preallocate M_AB. # mat = PETSc.Mat().create(comm=mesh_A.comm) mat.setType(PETSc.Mat.Type.AIJ) rsizes = tuple(n * rdim for n in nrows) csizes = tuple(c * cdim for c in ncols) mat.setSizes(size=(rsizes, csizes), bsize=(rdim, cdim)) mat.setPreallocationNNZ((dnnz, onnz)) mat.setLGMap(rmap=rset.lgmap, cmap=cset.lgmap) # TODO: Boundary conditions not handled. mat.setOption(mat.Option.IGNORE_OFF_PROC_ENTRIES, False) mat.setOption(mat.Option.NEW_NONZERO_ALLOCATION_ERR, True) mat.setOption(mat.Option.KEEP_NONZERO_PATTERN, True) mat.setOption(mat.Option.UNUSED_NONZERO_LOCATION_ERR, False) mat.setOption(mat.Option.IGNORE_ZERO_ENTRIES, True) mat.setUp() evaluate_kernel_A = compile_element(ufl.Coefficient(V_A), name="evaluate_kernel_A") evaluate_kernel_B = compile_element(ufl.Coefficient(V_B), name="evaluate_kernel_B") # We only need one of these since we assume that the two meshes both have CG1 coordinates to_reference_kernel = to_reference_coordinates(mesh_A.coordinates.ufl_element()) if dim == 2: reference_mesh = UnitTriangleMesh(comm=COMM_SELF) else: reference_mesh = UnitTetrahedronMesh(comm=COMM_SELF) evaluate_kernel_S = compile_element(ufl.Coefficient(reference_mesh.coordinates.function_space()), name="evaluate_kernel_S") V_S_A = FunctionSpace(reference_mesh, V_A.ufl_element()) V_S_B = FunctionSpace(reference_mesh, V_B.ufl_element()) M_SS = assemble(inner(TrialFunction(V_S_A), TestFunction(V_S_B)) * dx) M_SS.force_evaluation() M_SS = M_SS.M.handle[:, :] node_locations_A = utils.physical_node_locations(V_S_A).dat.data_ro_with_halos node_locations_B = utils.physical_node_locations(V_S_B).dat.data_ro_with_halos num_nodes_A = node_locations_A.shape[0] num_nodes_B = node_locations_B.shape[0] to_reference_kernel = to_reference_coordinates(mesh_A.coordinates.ufl_element()) supermesh_kernel_str = """ #include "libsupermesh-c.h" #include <petsc.h> %(to_reference)s %(evaluate_S)s %(evaluate_A)s %(evaluate_B)s #define PrintInfo(...) do { if (PetscLogPrintInfo) printf(__VA_ARGS__); } while (0) static void print_array(double *arr, int d) { for(int j=0; j<d; j++) PrintInfo("%%+.2f ", arr[j]); } static void print_coordinates(double *simplex, int d) { for(int i=0; i<d+1; i++) { PrintInfo("\t"); print_array(&simplex[d*i], d); PrintInfo("\\n"); } } int supermesh_kernel(double* simplex_A, double* simplex_B, double* simplices_C, double* nodes_A, double* nodes_B, double* M_SS, double* outptr) { #define d %(dim)s #define num_nodes_A %(num_nodes_A)s #define num_nodes_B %(num_nodes_B)s double simplex_ref_measure; PrintInfo("simplex_A coordinates\\n"); print_coordinates(simplex_A, d); PrintInfo("simplex_B coordinates\\n"); print_coordinates(simplex_B, d); int num_elements; if (d == 2) simplex_ref_measure = 0.5; else if (d == 3) simplex_ref_measure = 1.0/6; double R_AS[num_nodes_A][num_nodes_A]; double R_BS[num_nodes_B][num_nodes_B]; double coeffs_A[%(num_nodes_A)s] = {0.}; double coeffs_B[%(num_nodes_B)s] = {0.}; double reference_nodes_A[num_nodes_A][d]; double reference_nodes_B[num_nodes_B][d]; %(libsupermesh_intersect_simplices)s(simplex_A, simplex_B, simplices_C, &num_elements); PrintInfo("Supermesh consists of %%i elements\\n", num_elements); // would like to do this //double MAB[%(num_nodes_A)s][%(num_nodes_B)s] = (double (*)[%(num_nodes_B)s])outptr; // but have to do this instead because we don't grok C double (*MAB)[num_nodes_A] = (double (*)[num_nodes_A])outptr; double (*MSS)[num_nodes_A] = (double (*)[num_nodes_A])M_SS; // note the underscore for ( int i = 0; i < num_nodes_B; i++ ) { for (int j = 0; j < num_nodes_A; j++) { MAB[i][j] = 0; } } for(int s=0; s<num_elements; s++) { double* simplex_S = &simplices_C[s * d * (d+1)]; double simplex_S_measure; %(libsupermesh_simplex_measure)s(simplex_S, &simplex_S_measure); PrintInfo("simplex_S coordinates with measure %%f\\n", simplex_S_measure); print_coordinates(simplex_S, d); PrintInfo("Start mapping nodes for V_A\\n"); double physical_nodes_A[num_nodes_A][d]; for(int n=0; n < num_nodes_A; n++) { double* reference_node_location = &nodes_A[n*d]; double* physical_node_location = physical_nodes_A[n]; for (int j=0; j < d; j++) physical_node_location[j] = 0.0; pyop2_kernel_evaluate_kernel_S(physical_node_location, simplex_S, reference_node_location); PrintInfo("\\tNode "); print_array(reference_node_location, d); PrintInfo(" mapped to "); print_array(physical_node_location, d); PrintInfo("\\n"); } PrintInfo("Start mapping nodes for V_B\\n"); double physical_nodes_B[num_nodes_B][d]; for(int n=0; n < num_nodes_B; n++) { double* reference_node_location = &nodes_B[n*d]; double* physical_node_location = physical_nodes_B[n]; for (int j=0; j < d; j++) physical_node_location[j] = 0.0; pyop2_kernel_evaluate_kernel_S(physical_node_location, simplex_S, reference_node_location); PrintInfo("\\tNode "); print_array(reference_node_location, d); PrintInfo(" mapped to "); print_array(physical_node_location, d); PrintInfo("\\n"); } PrintInfo("==========================================================\\n"); PrintInfo("Start pulling back dof from S into reference space for A.\\n"); for(int n=0; n < num_nodes_A; n++) { for(int i=0; i<d; i++) reference_nodes_A[n][i] = 0.; to_reference_coords_kernel(reference_nodes_A[n], physical_nodes_A[n], simplex_A); PrintInfo("Pulling back "); print_array(physical_nodes_A[n], d); PrintInfo(" to "); print_array(reference_nodes_A[n], d); PrintInfo("\\n"); } PrintInfo("Start pulling back dof from S into reference space for B.\\n"); for(int n=0; n < num_nodes_B; n++) { for(int i=0; i<d; i++) reference_nodes_B[n][i] = 0.; to_reference_coords_kernel(reference_nodes_B[n], physical_nodes_B[n], simplex_B); PrintInfo("Pulling back "); print_array(physical_nodes_B[n], d); PrintInfo(" to "); print_array(reference_nodes_B[n], d); PrintInfo("\\n"); } PrintInfo("Start evaluating basis functions of V_A at dofs for V_A on S\\n"); for(int i=0; i<num_nodes_A; i++) { coeffs_A[i] = 1.; for(int j=0; j<num_nodes_A; j++) { R_AS[i][j] = 0.; pyop2_kernel_evaluate_kernel_A(&R_AS[i][j], coeffs_A, reference_nodes_A[j]); } print_array(R_AS[i], num_nodes_A); PrintInfo("\\n"); coeffs_A[i] = 0.; } PrintInfo("Start evaluating basis functions of V_B at dofs for V_B on S\\n"); for(int i=0; i<num_nodes_B; i++) { coeffs_B[i] = 1.; for(int j=0; j<num_nodes_B; j++) { R_BS[i][j] = 0.; pyop2_kernel_evaluate_kernel_B(&R_BS[i][j], coeffs_B, reference_nodes_B[j]); } print_array(R_BS[i], num_nodes_B); PrintInfo("\\n"); coeffs_B[i] = 0.; } PrintInfo("Start doing the matmatmat mult\\n"); for ( int i = 0; i < num_nodes_B; i++ ) { for (int j = 0; j < num_nodes_A; j++) { for ( int k = 0; k < num_nodes_B; k++) { for ( int l = 0; l < num_nodes_A; l++) { MAB[i][j] += (simplex_S_measure/simplex_ref_measure) * R_BS[i][k] * MSS[k][l] * R_AS[j][l]; } } } } } return num_elements; } """ % { "evaluate_S": str(evaluate_kernel_S), "evaluate_A": str(evaluate_kernel_A), "evaluate_B": str(evaluate_kernel_B), "to_reference": str(to_reference_kernel), "num_nodes_A": num_nodes_A, "num_nodes_B": num_nodes_B, "value_size_A": V_A.value_size, "value_size_B": V_B.value_size, "libsupermesh_simplex_measure": "libsupermesh_triangle_area" if dim == 2 else "libsupermesh_tetrahedron_volume", "libsupermesh_intersect_simplices": "libsupermesh_intersect_tris_real" if dim == 2 else "libsupermesh_intersect_tets_real", "dim": dim } dirs = get_petsc_dir() + (os.environ["VIRTUAL_ENV"], ) includes = ["-I%s/include" % d for d in dirs] libs = ["-L%s/lib" % d for d in dirs] libs = libs + ["-Wl,-rpath,%s/lib" % d for d in dirs] + ["-lpetsc", "-lsupermesh"] lib = load(supermesh_kernel_str, "c", "supermesh_kernel", cppargs=includes, ldargs=libs, argtypes=[ctypes.c_voidp, ctypes.c_voidp, ctypes.c_voidp, ctypes.c_voidp, ctypes.c_voidp, ctypes.c_voidp, ctypes.c_voidp], restype=ctypes.c_int) ammm(V_A, V_B, likely, node_locations_A, node_locations_B, M_SS, ctypes.addressof(lib), mat) if orig_value_size == 1: return mat else: (lrows, grows), (lcols, gcols) = mat.getSizes() lrows *= orig_value_size grows *= orig_value_size lcols *= orig_value_size gcols *= orig_value_size size = ((lrows, grows), (lcols, gcols)) context = BlockMatrix(mat, orig_value_size) blockmat = PETSc.Mat().createPython(size, context=context, comm=mat.comm) blockmat.setUp() return blockmat