コード例 #1
0
    def __init__(self, state, V, *, ibp="once", solver_params=None):
        super().__init__(state=state,
                         V=V,
                         ibp=ibp,
                         solver_params=solver_params)

        self.Upwind = 0.5 * (sign(dot(self.ubar, self.n)) + 1)

        if self.state.mesh.topological_dimension() == 2:
            self.perp = state.perp
            if state.on_sphere:
                outward_normals = CellNormal(state.mesh)
                self.perp_u_upwind = lambda q: self.Upwind('+') * cross(
                    outward_normals('+'), q('+')) + self.Upwind('-') * cross(
                        outward_normals('-'), q('-'))
            else:
                self.perp_u_upwind = lambda q: self.Upwind('+') * state.perp(
                    q('+')) + self.Upwind('-') * state.perp(q('-'))
            self.gradperp = lambda u: state.perp(grad(u))
        elif self.state.mesh.topological_dimension() == 3:
            if self.ibp == "twice":
                raise NotImplementedError(
                    "ibp=twice is not implemented for 3d problems")
        else:
            raise RuntimeError("topological mesh dimension must be 2 or 3")
コード例 #2
0
    def residual(self, test, trial, trial_lagged, fields, bcs):
        u_adv = trial_lagged
        phi = test
        n = self.n
        u = trial

        F = -dot(u, div(outer(phi, u_adv)))*self.dx

        for id, bc in bcs.items():
            if 'u' in bc:
                u_in = bc['u']
            elif 'un' in bc:
                u_in = bc['un'] * n  # this implies u_t=0 on the inflow
            else:
                u_in = zero(self.dim)
            F += conditional(dot(u_adv, n) < 0,
                             dot(phi, u_in)*dot(u_adv, n),
                             dot(phi, u)*dot(u_adv, n)) * self.ds(id)

        if not (is_continuous(self.trial_space) and normal_is_continuous(u_adv)):
            # s=0: u.n(-)<0  =>  flow goes from '+' to '-' => '+' is upwind
            # s=1: u.n(-)>0  =>  flow goes from '-' to '+' => '-' is upwind
            s = 0.5*(sign(dot(avg(u), n('-'))) + 1.0)
            u_up = u('-')*s + u('+')*(1-s)
            F += dot(u_up, (dot(u_adv('+'), n('+'))*phi('+') + dot(u_adv('-'), n('-'))*phi('-'))) * self.dS

        return -F
コード例 #3
0
def heaviside(x):
    """Defines the heaviside step function in UFL.

    Parameters:

    x - single coordinate of a UFL SpatialCoordinate.
    """
    return 0.5 * (sign(real(x)) + 1.0)
コード例 #4
0
def form_function(u, h, v, q):
    K = 0.5 * fd.inner(u, u)
    n = fd.FacetNormal(mesh)
    uup = 0.5 * (fd.dot(u, n) + abs(fd.dot(u, n)))
    Upwind = 0.5 * (fd.sign(fd.dot(u, n)) + 1)

    eqn = (fd.inner(v, f * perp(u)) * fd.dx -
           fd.inner(perp(fd.grad(fd.inner(v, perp(u)))), u) * fd.dx +
           fd.inner(both(perp(n) * fd.inner(v, perp(u))), both(Upwind * u)) *
           fd.dS - fd.div(v) * (g * (h + b) + K) * fd.dx -
           fd.inner(fd.grad(q), u) * h * fd.dx + fd.jump(q) *
           (uup('+') * h('+') - uup('-') * h('-')) * fd.dS)
    return eqn
コード例 #5
0
def vector_invariant_form(state, test, q, ibp=IntegrateByParts.ONCE):

    Vu = state.spaces("HDiv")
    dS_ = (dS_v + dS_h) if Vu.extruded else dS
    ubar = Function(Vu)
    n = FacetNormal(state.mesh)
    Upwind = 0.5 * (sign(dot(ubar, n)) + 1)

    if state.mesh.topological_dimension() == 3:

        if ibp != IntegrateByParts.ONCE:
            raise NotImplementedError

        # <w,curl(u) cross ubar + grad( u.ubar)>
        # =<curl(u),ubar cross w> - <div(w), u.ubar>
        # =<u,curl(ubar cross w)> -
        #      <<u_upwind, [[n cross(ubar cross w)cross]]>>

        both = lambda u: 2 * avg(u)

        L = (inner(q, curl(cross(ubar, test))) * dx -
             inner(both(Upwind * q), both(cross(n, cross(ubar, test)))) * dS_)

    else:

        perp = state.perp
        if state.on_sphere:
            outward_normals = CellNormal(state.mesh)
            perp_u_upwind = lambda q: Upwind('+') * cross(
                outward_normals('+'), q('+')) + Upwind('-') * cross(
                    outward_normals('-'), q('-'))
        else:
            perp_u_upwind = lambda q: Upwind('+') * perp(q('+')) + Upwind(
                '-') * perp(q('-'))

        if ibp == IntegrateByParts.ONCE:
            L = (-inner(perp(grad(inner(test, perp(ubar)))), q) * dx -
                 inner(jump(inner(test, perp(ubar)), n), perp_u_upwind(q)) *
                 dS_)
        else:
            L = ((-inner(test,
                         div(perp(q)) * perp(ubar))) * dx -
                 inner(jump(inner(test, perp(ubar)), n), perp_u_upwind(q)) *
                 dS_ + jump(inner(test, perp(ubar)) * perp(q), n) * dS_)

    L -= 0.5 * div(test) * inner(q, ubar) * dx

    form = transporting_velocity(L, ubar)

    return transport(form, TransportEquationType.vector_invariant)
コード例 #6
0
    def advection_term(self, q):

        n = FacetNormal(self.state.mesh)
        Upwind = 0.5 * (sign(dot(self.ubar, n)) + 1)

        if self.state.mesh.topological_dimension() == 3:
            # <w,curl(u) cross ubar + grad( u.ubar)>
            # =<curl(u),ubar cross w> - <div(w), u.ubar>
            # =<u,curl(ubar cross w)> -
            #      <<u_upwind, [[n cross(ubar cross w)cross]]>>

            both = lambda u: 2 * avg(u)

            L = (inner(q, curl(cross(self.ubar, self.test))) * dx -
                 inner(both(Upwind * q),
                       both(cross(n, cross(self.ubar, self.test)))) * self.dS)

        else:

            perp = self.state.perp
            if self.state.on_sphere:
                outward_normals = CellNormal(self.state.mesh)
                perp_u_upwind = lambda q: Upwind('+') * cross(
                    outward_normals('+'), q('+')) + Upwind('-') * cross(
                        outward_normals('-'), q('-'))
            else:
                perp_u_upwind = lambda q: Upwind('+') * perp(q('+')) + Upwind(
                    '-') * perp(q('-'))

            if self.ibp == IntegrateByParts.ONCE:
                L = (-inner(perp(grad(inner(self.test, perp(self.ubar)))), q) *
                     dx - inner(jump(inner(self.test, perp(self.ubar)), n),
                                perp_u_upwind(q)) * self.dS)
            else:
                L = ((-inner(self.test,
                             div(perp(q)) * perp(self.ubar))) * dx -
                     inner(jump(inner(self.test, perp(self.ubar)), n),
                           perp_u_upwind(q)) * self.dS +
                     jump(inner(self.test, perp(self.ubar)) * perp(q), n) *
                     self.dS)

        L -= 0.5 * div(self.test) * inner(q, self.ubar) * dx

        return L
コード例 #7
0
# Load initial conditions onto fields
if pickup:
    with DumbCheckpoint("chkpt_{0}".format(fname), mode=FILE_READ) as chk:
        chk.load(xn)
        init_t = chk.read_attribute("/", "time")
else:
    un.project(uexpr, form_compiler_parameters={'quadrature_degree': 12})
    Dn.interpolate(Dexpr)
b.interpolate(bexpr)

if COMM_WORLD.Get_rank() == 0:
    print("Finished setting up functions at", ctime())

# Build perp and upwind perp (including 2D version for test purposes)
n = FacetNormal(mesh)
s = lambda u: 0.5 * (sign(dot(u, n)) + 1)
uw = lambda u, v: (s(u)('+') * v('+') + s(u)('-') * v('-'))

if mesh.geometric_dimension() == 2:
    perp = lambda u: as_vector([-u[1], u[0]])
    p_uw = lambda u, v: perp(uw(u, v))
else:
    perp = lambda u: cross(CellNormal(mesh), u)
    out_n = CellNormal(mesh)
    p_uw = lambda u, v: (s(u)('+') * cross(out_n('+'), v('+')) + s(u)
                         ('-') * cross(out_n('-'), v('-')))

# Initial solve for vorticity for output
eta = TestFunction(W2)
q_ = TrialFunction(W2)
q_eqn = eta * q_ * Dn * dx + inner(perp(grad(eta)), un) * dx - eta * f * dx
コード例 #8
0
ファイル: advection.py プロジェクト: firedrakeproject/gusto
    def __init__(self, state, V):
        super(EulerPoincareForm, self).__init__(state)

        dt = state.timestepping.dt
        w = TestFunction(V)
        u = TrialFunction(V)
        self.u0 = Function(V)
        ustar = 0.5*(self.u0 + u)
        n = FacetNormal(state.mesh)
        Upwind = 0.5*(sign(dot(self.ubar, n))+1)

        if state.mesh.geometric_dimension() == 3:

            if V.extruded:
                surface_measure = (dS_h + dS_v)
            else:
                surface_measure = dS

            # <w,curl(u) cross ubar + grad( u.ubar)>
            # =<curl(u),ubar cross w> - <div(w), u.ubar>
            # =<u,curl(ubar cross w)> -
            #      <<u_upwind, [[n cross(ubar cross w)cross]]>>

            both = lambda u: 2*avg(u)

            Eqn = (
                inner(w, u-self.u0)*dx
                + dt*inner(ustar, curl(cross(self.ubar, w)))*dx
                - dt*inner(both(Upwind*ustar),
                           both(cross(n, cross(self.ubar, w))))*surface_measure
                - dt*div(w)*inner(ustar, self.ubar)*dx
            )

        # define surface measure and terms involving perp differently
        # for slice (i.e. if V.extruded is True) and shallow water
        # (V.extruded is False)
        else:
            if V.extruded:
                surface_measure = (dS_h + dS_v)
                perp = lambda u: as_vector([-u[1], u[0]])
                perp_u_upwind = Upwind('+')*perp(ustar('+')) + Upwind('-')*perp(ustar('-'))
            else:
                surface_measure = dS
                outward_normals = CellNormal(state.mesh)
                perp = lambda u: cross(outward_normals, u)
                perp_u_upwind = Upwind('+')*cross(outward_normals('+'),ustar('+')) + Upwind('-')*cross(outward_normals('-'),ustar('-'))

            Eqn = (
                (inner(w, u-self.u0)
                 - dt*inner(w, div(perp(ustar))*perp(self.ubar))
                 - dt*div(w)*inner(ustar, self.ubar))*dx
                - dt*inner(jump(inner(w, perp(self.ubar)), n),
                           perp_u_upwind)*surface_measure
                + dt*jump(inner(w,
                                perp(self.ubar))*perp(ustar), n)*surface_measure
            )

        a = lhs(Eqn)
        L = rhs(Eqn)
        self.u1 = Function(V)
        uproblem = LinearVariationalProblem(a, L, self.u1)
        self.usolver = LinearVariationalSolver(uproblem,
                                               options_prefix='EPAdvection')