コード例 #1
0
def test_get_model_device():
    assert get_module_device(nn.Linear(5, 5)) == torch.device('cpu')
    assert get_module_device(nn.Module()) == torch.device('cpu')

    # TODO: didn't find a way to simulate GPU,
    # so let's at least add a conditional test...
    if torch.cuda.is_available():
        assert get_module_device(nn.Linear(
            5, 5).to('cuda')) == torch.device('cuda:0')
コード例 #2
0
ファイル: utils.py プロジェクト: universome/loss-patterns
def compute_activations_entropy(model, dataloader, num_bins:int=100):
    num_layers = len(model)
    activations = [torch.Tensor([]) for _ in range(num_layers + 1)]
    device = get_module_device(model)

    for x, _ in dataloader:
        for i, act in enumerate(get_activations_for_sequential(model, x.to(device))):
            activations[i] = torch.cat([activations[i], act])

    entropies = [compute_entropy(acts, num_bins) for acts in activations]

    return entropies
コード例 #3
0
ファイル: utils.py プロジェクト: universome/loss-patterns
def validate(model, dataloader, criterion) -> Tuple[float, float]:
    model.eval()
    guessed = np.array([])
    losses = np.array([])
    device = get_module_device(model)

    with torch.no_grad():
        for X, y in dataloader:
            X, y = X.to(device), y.to(device)
            preds = model(X)
            loss = criterion(preds, y)
            losses = np.hstack([losses, loss.cpu().numpy()])
            guessed = np.hstack([guessed, (preds.argmax(dim=1) == y).long().cpu().numpy()])

    return losses.mean(), guessed.mean()
コード例 #4
0
def extract_features(imgs: List[np.ndarray],
                     embedder: nn.Module,
                     batch_size: int = 64,
                     verbose: bool = True) -> List[np.ndarray]:
    dataloader = DataLoader(imgs, batch_size=batch_size, num_workers=4)
    device = get_module_device(embedder)
    result = []

    with torch.no_grad():
        batches = tqdm(dataloader,
                       desc='[Extracting features]') if verbose else dataloader
        for x in batches:
            feats = embedder(x.to(device)).cpu().numpy()
            result.extend(feats)

    return result
コード例 #5
0
def compute_grad(model: nn.Module, criterion: nn.Module,
                 dataloader: DataLoader, output_mask: np.ndarray,
                 elementwise_grad_norm: str) -> Tensor:
    """
    Computes gradient of the given loss across the dataset

    :param model:
    :param dataloader:
    :return:
    """
    num_samples = 0
    num_params = sum(p.numel() for p in model.parameters())
    device = get_module_device(model)
    grad = torch.zeros(num_params).to(device)

    for x, y in dataloader:
        x = torch.from_numpy(np.array(x)).to(device)
        y = torch.tensor(y).to(device)
        logits = model(x)
        pruned_logits = prune_logits(logits, output_mask)
        loss = criterion(pruned_logits, y)

        model.zero_grad()
        loss.backward()
        curr_grad = torch.cat(
            [get_grad(p).view(-1) for p in model.parameters()])

        if elementwise_grad_norm == 'square':
            curr_grad = curr_grad.pow(2)
        elif elementwise_grad_norm == 'abs':
            curr_grad = curr_grad.abs()
        else:
            raise NotImplementedError(
                f'Unknown elementwise grad norm: {elementwise_grad_norm}')

        grad += curr_grad
        num_samples += len(x)

    return grad / num_samples