コード例 #1
0
ファイル: test_TimeTracking.py プロジェクト: mfkiwl/fireshape
def test_TimeTracking():
    """ Main test."""

    # setup problem
    mesh = fd.UnitSquareMesh(20, 20)
    Q = fs.FeControlSpace(mesh)
    inner = fs.LaplaceInnerProduct(Q, fixed_bids=[1, 2, 3, 4])
    q = fs.ControlVector(Q, inner)

    # create PDEconstrained objective functional
    J = TimeTracking(Q)

    # ROL parameters
    params_dict = {
        'General': {
            'Secant': {
                'Type': 'Limited-Memory BFGS',
                'Maximum Storage': 25
            }
        },
        'Step': {
            'Type': 'Trust Region'
        },
        'Status Test': {
            'Gradient Tolerance': 1e-3,
            'Step Tolerance': 1e-8,
            'Iteration Limit': 20
        }
    }

    # assemble and solve ROL optimization problem
    params = ROL.ParameterList(params_dict, "Parameters")
    problem = ROL.OptimizationProblem(J, q)
    solver = ROL.OptimizationSolver(problem, params)
    solver.solve()

    # verify that the norm of the gradient at optimum is small enough
    state = solver.getAlgorithmState()
    assert (state.gnorm < 1e-3)
コード例 #2
0
import firedrake as fd
import fireshape as fs
import fireshape.zoo as fsz
import ROL

n = 30
# mesh = fd.UnitSquareMesh(n, n)
mesh = fd.Mesh("UnitSquareCrossed.msh")
mesh = fd.MeshHierarchy(mesh, 1)[-1]

Q = fs.FeMultiGridControlSpace(mesh, refinements=3, order=2)
inner = fs.LaplaceInnerProduct(Q)
mesh_m = Q.mesh_m
V_m = fd.FunctionSpace(mesh_m, "CG", 1)
f_m = fd.Function(V_m)

(x, y) = fd.SpatialCoordinate(mesh_m)
f = (pow(x - 0.5, 2)) + pow(y - 0.5, 2) - 2.
out = fd.File("domain.pvd")
J = fsz.LevelsetFunctional(f, Q, cb=lambda: out.write(mesh_m.coordinates))

q = fs.ControlVector(Q, inner)

params_dict = {
    'General': {
        'Secant': {
            'Type': 'Limited-Memory BFGS',
            'Maximum Storage': 5
        }
    },
    'Step': {
コード例 #3
0
print("Harmonic map exists for r^*/R^* = %.2f" % ((0.5 * (R / r + r / R))**-1))
Rs = 1.0
rs = args.rstar

Q = fs.FeControlSpace(mesh)
d = distance_function(Q.get_space_for_inner()[0].mesh(), boundary_ids=[1, 2])
if args.weighted:
    mu_base = 0.01 / (0.01 + d)
else:
    mu_base = fd.Constant(1.)

# mu_base = fd.Constant(1.0)
if args.base_inner == "elasticity":
    inner = fs.ElasticityInnerProduct(Q, mu=mu_base, direct_solve=True)
elif args.base_inner == "laplace":
    inner = fs.LaplaceInnerProduct(Q, mu=mu_base, direct_solve=True)
else:
    raise NotImplementedError

if args.alpha is not None:
    mu_cr = mu_base / args.alpha
    inner = CauchyRiemannAugmentation(mu_cr, inner)

mesh_m = Q.mesh_m
(x, y) = fd.SpatialCoordinate(mesh_m)

r = fd.sqrt(x**2 + y**2)
expr = (r - fd.Constant(rs)) * (r - fd.Constant(Rs))
J = 0.1 * fsz.LevelsetFunctional(expr, Q, quadrature_degree=5)
q = fs.ControlVector(Q, inner)
コード例 #4
0
            fd.solve(self.F(t, self.u, self.u_old) == 0, self.u, bcs=self.bcs)
            t += self.dt
            self.J += fd.assemble(self.dt * (self.u - self.u_t(t))**2 *
                                  self.dx)

    def objective_value(self):
        """Return the value of the objective function."""
        return self.J


if __name__ == "__main__":

    # setup problem
    mesh = fd.UnitSquareMesh(20, 20)
    Q = fs.FeControlSpace(mesh)
    inner = fs.LaplaceInnerProduct(Q, fixed_bids=[1, 2, 3, 4])
    q = fs.ControlVector(Q, inner)
    J = TimeTracking(Q)

    params_dict = {
        'Step': {
            'Type': 'Trust Region'
        },
        'General': {
            'Secant': {
                'Type': 'Limited-Memory BFGS',
                'Maximum Storage': 25
            }
        },
        'Status Test': {
            'Gradient Tolerance': 1e-3,
コード例 #5
0
import firedrake as fd
import fireshape as fs
import fireshape.zoo as fsz
import ROL
from PDEconstraint_pipe import NavierStokesSolver
from objective_pipe import PipeObjective

# setup problem
mesh = fd.Mesh("pipe.msh")
Q = fs.FeControlSpace(mesh)
inner = fs.LaplaceInnerProduct(Q, fixed_bids=[10, 11, 12])
q = fs.ControlVector(Q, inner)

# setup PDE constraint
if mesh.topological_dimension() == 2:  # in 2D
    viscosity = fd.Constant(1./400.)
elif mesh.topological_dimension() == 3:  # in 3D
    viscosity = fd.Constant(1/10.)  # simpler problem in 3D
else:
    raise NotImplementedError
e = NavierStokesSolver(Q.mesh_m, viscosity)

# save state variable evolution in file u2.pvd or u3.pvd
if mesh.topological_dimension() == 2:  # in 2D
    out = fd.File("solution/u2D.pvd")
elif mesh.topological_dimension() == 3:  # in 3D
    out = fd.File("solution/u3D.pvd")


def cb():
    return out.write(e.solution.split()[0])
コード例 #6
0
def test_regularization(controlspace_t, use_extension):
    n = 10
    mesh = fd.UnitSquareMesh(n, n)

    if controlspace_t == fs.FeMultiGridControlSpace:
        Q = fs.FeMultiGridControlSpace(mesh, refinements=1, order=2)
    else:
        Q = controlspace_t(mesh)

    if use_extension:
        inner = fs.SurfaceInnerProduct(Q)
        ext = fs.ElasticityExtension(Q.V_r)
    else:
        inner = fs.LaplaceInnerProduct(Q)
        ext = None

    q = fs.ControlVector(Q, inner, boundary_extension=ext)

    X = fd.SpatialCoordinate(mesh)
    q.fun.interpolate(0.5 * X)

    lower_bound = Q.T.copy(deepcopy=True)
    lower_bound.interpolate(fd.Constant((-0.0, -0.0)))
    upper_bound = Q.T.copy(deepcopy=True)
    upper_bound.interpolate(fd.Constant((+1.3, +0.9)))

    J1 = fsz.MoYoBoxConstraint(1, [1, 2, 3, 4],
                               Q,
                               lower_bound=lower_bound,
                               upper_bound=upper_bound)
    J2 = fsz.MoYoSpectralConstraint(1, fd.Constant(0.2), Q)
    J3 = fsz.DeformationRegularization(Q,
                                       l2_reg=.1,
                                       sym_grad_reg=1.,
                                       skew_grad_reg=.5)
    if isinstance(Q, fs.FeMultiGridControlSpace):
        J4 = fsz.CoarseDeformationRegularization(Q,
                                                 l2_reg=.1,
                                                 sym_grad_reg=1.,
                                                 skew_grad_reg=.5)
        Js = 0.1 * J1 + J2 + 2. * (J3 + J4)
    else:
        Js = 0.1 * J1 + J2 + 2. * J3

    g = q.clone()

    def run_taylor_test(J):
        J.update(q, None, 1)
        J.gradient(g, q, None)
        return J.checkGradient(q, g, 7, 1)

    def check_result(test_result):
        for i in range(len(test_result) - 1):
            assert test_result[i + 1][3] <= test_result[i][3] * 0.11

    check_result(run_taylor_test(J1))
    check_result(run_taylor_test(J2))
    check_result(run_taylor_test(J3))
    if isinstance(Q, fs.FeMultiGridControlSpace):
        check_result(run_taylor_test(J4))
    check_result(run_taylor_test(Js))
コード例 #7
0
def test_box_constraint(pytestconfig):

    n = 5
    mesh = fd.UnitSquareMesh(n, n)
    T = mesh.coordinates.copy(deepcopy=True)
    (x, y) = fd.SpatialCoordinate(mesh)
    T.interpolate(T + fd.Constant((1, 0)) * x * y)
    mesh = fd.Mesh(T)

    Q = fs.FeControlSpace(mesh)
    inner = fs.LaplaceInnerProduct(Q, fixed_bids=[1])
    mesh_m = Q.mesh_m
    q = fs.ControlVector(Q, inner)
    if pytestconfig.getoption("verbose"):
        out = fd.File("domain.pvd")

        def cb():
            out.write(mesh_m.coordinates)
    else:

        def cb():
            pass

    lower_bound = Q.T.copy(deepcopy=True)
    lower_bound.interpolate(fd.Constant((-0.0, -0.0)))
    upper_bound = Q.T.copy(deepcopy=True)
    upper_bound.interpolate(fd.Constant((+1.3, +0.9)))

    J = fsz.MoYoBoxConstraint(1, [2],
                              Q,
                              lower_bound=lower_bound,
                              upper_bound=upper_bound,
                              cb=cb,
                              quadrature_degree=100)
    g = q.clone()
    J.gradient(g, q, None)
    taylor_result = J.checkGradient(q, g, 9, 1)

    for i in range(len(taylor_result) - 1):
        if taylor_result[i][3] > 1e-7:
            assert taylor_result[i + 1][3] <= taylor_result[i][3] * 0.11

    params_dict = {
        'Step': {
            'Type': 'Line Search',
            'Line Search': {
                'Descent Method': {
                    'Type': 'Quasi-Newton Step'
                }
            }
        },
        'General': {
            'Secant': {
                'Type': 'Limited-Memory BFGS',
                'Maximum Storage': 2
            }
        },
        'Status Test': {
            'Gradient Tolerance': 1e-10,
            'Step Tolerance': 1e-10,
            'Iteration Limit': 150
        }
    }

    params = ROL.ParameterList(params_dict, "Parameters")
    problem = ROL.OptimizationProblem(J, q)
    solver = ROL.OptimizationSolver(problem, params)
    solver.solve()
    Tvec = Q.T.vector()
    nodes = fd.DirichletBC(Q.V_r, fd.Constant((0.0, 0.0)), [2]).nodes
    assert np.all(Tvec[nodes, 0] <= 1.3 + 1e-4)
    assert np.all(Tvec[nodes, 1] <= 0.9 + 1e-4)
コード例 #8
0
def test_objective_plus_box_constraint(pytestconfig):

    n = 10
    mesh = fd.UnitSquareMesh(n, n)
    T = mesh.coordinates.copy(deepcopy=True)
    (x, y) = fd.SpatialCoordinate(mesh)
    T.interpolate(T + fd.Constant((0, 0)))
    mesh = fd.Mesh(T)

    Q = fs.FeControlSpace(mesh)
    inner = fs.LaplaceInnerProduct(Q)
    mesh_m = Q.mesh_m
    q = fs.ControlVector(Q, inner)
    if pytestconfig.getoption("verbose"):
        out = fd.File("domain.pvd")

        def cb():
            out.write(mesh_m.coordinates)
    else:

        def cb():
            pass

    lower_bound = Q.T.copy(deepcopy=True)
    lower_bound.interpolate(fd.Constant((-0.2, -0.2)))
    upper_bound = Q.T.copy(deepcopy=True)
    upper_bound.interpolate(fd.Constant((+1.2, +1.2)))

    # levelset test case
    (x, y) = fd.SpatialCoordinate(Q.mesh_m)
    f = (pow(x - 0.5, 2)) + pow(y - 0.5, 2) - 4.
    J1 = fsz.LevelsetFunctional(f, Q, cb=cb, quadrature_degree=10)
    J2 = fsz.MoYoBoxConstraint(10., [1, 2, 3, 4],
                               Q,
                               lower_bound=lower_bound,
                               upper_bound=upper_bound,
                               cb=cb,
                               quadrature_degree=10)
    J3 = fsz.MoYoSpectralConstraint(100,
                                    fd.Constant(0.6),
                                    Q,
                                    cb=cb,
                                    quadrature_degree=100)

    J = 0.1 * J1 + J2 + J3
    g = q.clone()
    J.gradient(g, q, None)
    taylor_result = J.checkGradient(q, g, 9, 1)

    for i in range(len(taylor_result) - 1):
        if taylor_result[i][3] > 1e-6 and taylor_result[i][3] < 1e-3:
            assert taylor_result[i + 1][3] <= taylor_result[i][3] * 0.15

    params_dict = {
        'Step': {
            'Type': 'Line Search',
            'Line Search': {
                'Descent Method': {
                    'Type': 'Quasi-Newton Step'
                }
            }
        },
        'General': {
            'Secant': {
                'Type': 'Limited-Memory BFGS',
                'Maximum Storage': 2
            }
        },
        'Status Test': {
            'Gradient Tolerance': 1e-10,
            'Step Tolerance': 1e-10,
            'Iteration Limit': 10
        }
    }

    params = ROL.ParameterList(params_dict, "Parameters")
    problem = ROL.OptimizationProblem(J, q)
    solver = ROL.OptimizationSolver(problem, params)
    solver.solve()
    Tvec = Q.T.vector()
    nodes = fd.DirichletBC(Q.V_r, fd.Constant((0.0, 0.0)), [2]).nodes
    assert np.all(Tvec[nodes, 0] <= 1.2 + 1e-1)
    assert np.all(Tvec[nodes, 1] <= 1.2 + 1e-1)
コード例 #9
0
def test_spectral_constraint(pytestconfig):
    n = 5
    mesh = fd.UnitSquareMesh(n, n)
    T = fd.Function(fd.VectorFunctionSpace(
        mesh, "CG",
        1)).interpolate(fd.SpatialCoordinate(mesh) - fd.Constant((0.5, 0.5)))
    mesh = fd.Mesh(T)
    Q = fs.FeControlSpace(mesh)
    inner = fs.LaplaceInnerProduct(Q)
    mesh_m = Q.mesh_m
    q = fs.ControlVector(Q, inner)
    if pytestconfig.getoption("verbose"):
        out = fd.File("domain.pvd")

        def cb():
            out.write(mesh_m.coordinates)
    else:

        def cb():
            pass

    J = fsz.MoYoSpectralConstraint(0.5, fd.Constant(0.1), Q, cb=cb)
    q.fun += Q.T
    g = q.clone()
    J.update(q, None, -1)
    J.gradient(g, q, None)
    cb()
    taylor_result = J.checkGradient(q, g, 7, 1)

    for i in range(len(taylor_result) - 1):
        assert taylor_result[i + 1][3] <= taylor_result[i][3] * 0.11

    params_dict = {
        'General': {
            'Secant': {
                'Type': 'Limited-Memory BFGS',
                'Maximum Storage': 2
            }
        },
        'Step': {
            'Type': 'Line Search',
            'Line Search': {
                'Descent Method': {
                    'Type': 'Quasi-Newton Step'
                }
            }
        },
        'Status Test': {
            'Gradient Tolerance': 1e-10,
            'Step Tolerance': 1e-10,
            'Iteration Limit': 150
        }
    }

    params = ROL.ParameterList(params_dict, "Parameters")
    problem = ROL.OptimizationProblem(J, q)
    solver = ROL.OptimizationSolver(problem, params)
    solver.solve()
    Tvec = Q.T.vector()[:, :]
    for i in range(Tvec.shape[0]):
        assert abs(Tvec[i, 0]) < 0.55 + 1e-4
        assert abs(Tvec[i, 1]) < 0.55 + 1e-4
    assert np.any(np.abs(Tvec) > 0.55 - 1e-4)
コード例 #10
0
use_cr = bool(args.use_cr)
base_inner = args.base_inner

mesh = fd.Mesh("Sphere2D.msh")
Q = fs.FeControlSpace(mesh)
d = distance_function(Q.get_space_for_inner()[0].mesh(), eps=fd.Constant(0.1))
mu_base = 0.01 / (0.01 + d)

if base_inner == "elasticity":
    inner = fs.ElasticityInnerProduct(Q,
                                      fixed_bids=[1, 2, 3],
                                      mu=mu_base,
                                      direct_solve=True)
elif base_inner == "laplace":
    inner = fs.LaplaceInnerProduct(Q,
                                   fixed_bids=[1, 2, 3],
                                   mu=mu_base,
                                   direct_solve=True)
else:
    raise NotImplementedError

if use_cr:
    mu_cr = 100.0 * mu_base
    inner = CauchyRiemannAugmentation(mu_cr, inner)

mesh_m = Q.mesh_m
(x, y) = fd.SpatialCoordinate(mesh_m)
inflow_expr = fd.Constant((1.0, 0.0))
e = fsz.StokesSolver(mesh_m,
                     inflow_bids=[1, 2, 3],
                     inflow_expr=inflow_expr,
                     noslip_bids=[4],