コード例 #1
0
 def setup(self, mission):
     if mission is None:
         self.isSetup = False
         return
     
     np.random.seed(mission.planning.get('seed', None))
     
     # setting the mean and norm weights (used in reachability check)
     cc = mission.planning['setup']['controller']
     SE2BeliefState.covNormWeight = cc['norm_covariance_weight']
     SE2BeliefState.meanNormWeight = cc['norm_mean_weight']
     SE2BeliefState.reachDist = cc['reach_dist']
     # set the state component norm weights
     SE2BeliefState.normWeights = np.array(cc['norm_state_weights'])
     
     # load environment
     self.env = mission.environment
     # load robot model
     assert mission.no_active_vehicles == 1
     self.robotModel = mission.vehicles.itervalues().next()
     # read the start Pose
     x, y, yaw = self.robotModel['initial_state']
     cov = self.robotModel['initial_covariance']
     self.start = SE2BeliefState(x, y, yaw, cov)
     # read the specification
     self.spec  = mission.specification
     # read planning time
     self.planningTime = mission.planning['planning_time']
     self.planningSteps = mission.planning['planning_steps']
     self.sat_prob_threshold = mission.planning['sat_probability_threshold']
     
     logging.info('Problem configuration is')
     logging.info("Start Pose: %s", str(self.start))
     logging.info("Specification: %s", self.spec)
     logging.info("Planning Time: %f seconds", self.planningTime)
     
     # create the observation model
     observationModel = CameraLocalization(self.robotModel, self.env)
     # create the motion model
     motionModel = UnicycleMotionModel(self.robotModel)
     # create planner
     self.planner = FIRM(self.env, motionModel, observationModel,
                         mission.planning['setup'])
     # set specification
     state_label = self.robotModel['motion_model']['state_label']
     cov_label = self.robotModel['motion_model']['covariance_label']
     data = dict()
     execfile(mission.predicates, data)
     predicates = data['predicates']
     self.planner.obstacles = data['obstacles']
     del data
     assert predicates is not None, \
                         'You need to provide at least an empty dictionary!'
     self.planner.setSpecification(self.spec, state_label=state_label,
                                   cov_label=cov_label,
                                   predicates=predicates)
     # set initial state
     self.planner.addState(self.start, initial=True)
     # set sampler
     self.planner.sampler = SE2StateSampler(self.planner.bounds + np.array([[0.2, 0.2], [-0.2, -0.2]])) #TODO: make this general
コード例 #2
0
ファイル: tests_bkup.py プロジェクト: wasserfeder/gdtl-firm
def test_observation_model():

    isSimulation = True

    if not isSimulation:
        rospy.init_node("ObservationModelTest", anonymous=True)

    # 1. load mission and environment
    mission = Mission.from_file(
        '/home/cristi/Dropbox/work/workspace_linux/PyFIRM/src/data/simple/mission.yaml'
    )
    logging.info('\n' + str(mission))
    logging.info('Seed: %s', mission.simulation.get('seed', None))
    # load environment
    env = mission.environment
    # load robot model
    assert mission.no_active_vehicles == 1
    robotModel = mission.vehicles.itervalues().next()
    print robotModel['observation_model']

    cam = CameraLocalization(robotModel, env, isSimulation=isSimulation)

    if not isSimulation:
        rospy.spin()
コード例 #3
0
ファイル: tests_bkup.py プロジェクト: wasserfeder/gdtl-firm
def test_controller():
    #     from optitrack import OptiTrackInterface
    from numpy.linalg import norm

    isSimulation = False

    if not isSimulation:
        rospy.init_node("ControllerTest", anonymous=True)

    # 1. load mission and environment
    mission = Mission.from_file(
        '/home/cristi/Dropbox/work/workspace_linux/PyFIRM/src/data/simple/mission.yaml'
    )
    logging.info('\n' + str(mission))
    logging.info('Seed: %s', mission.simulation.get('seed', None))

    # load environment
    env = mission.environment
    # load robot model
    assert mission.no_active_vehicles == 1
    robotModel = mission.vehicles.itervalues().next()
    print 'Motion model:', robotModel['motion_model']

    cc = mission.planning['setup']['controller']
    SE2BeliefState.covNormWeight = 0 * cc['norm_covariance_weight']
    SE2BeliefState.meanNormWeight = 1  #cc['norm_mean_weight']
    SE2BeliefState.reachDist = cc['reach_dist']
    # set the state component norm weights
    SE2BeliefState.normWeights = np.array([1, 1,
                                           0])  #cc['norm_state_weights'])
    SE2BeliefState.normWeights[2] = 0

    robot = UnicycleMotionModel(robotModel, isSimulation)
    print 'Time step:', robot.dt
    robot.rate.sleep()

    print 'Observation model:', robotModel['observation_model']
    cam = CameraLocalization(robotModel, env, isSimulation=isSimulation)
    robot.rate.sleep()

    #---------------------------------------------------------------------------
    d_epsilon = 0.05  # error bound around waypoint
    a_epsilon = np.deg2rad(15)  # error bound for turning

    #     rid = 1
    #     opti = OptiTrackInterface()
    #     body = opti.trackInfo()[rid] # get data for rigid body w/ rigid body ID `rid'
    #     opti._close()
    x, y, theta = cam.getObservation(
        None)  #body.z, body.x, np.deg2rad(body.yaw)
    print x, y, theta

    #---------------------------------------------------------------------------

    def save_trajectory():
        true_traj = []
        traj = []
        while True:
            state = yield traj, true_traj
            print 'save state:', state.conf
            traj.append(state.copy())
            true_traj.append(
                cam.getObservation(state))  #TODO: change this back


#             true_traj.append(cam.getObservationPrediction(state))

#     filter_time = 4 # [sec]
#     filter_stab  = int(filter_time/robot.dt)
#     print 'filter steps:', filter_stab, 'dt:', robot.dt

    path = [(x, y), (x + 1, y + 1)]  #, (x+2, y+1), (x+1, y), (x, y)]
    for (xs, ys), (xg, yg) in zip(path[:-1], path[1:]):
        start = SE2BeliefState(xs, ys, theta)
        goal = SE2BeliefState(xg, yg, np.pi /
                              2)  # NOTE: end orientation does not matter

        print 'Start:', start.conf, 'Goal:', goal.conf

        tlqr = SwitchingController(robot,
                                   cam,
                                   goal,
                                   stateWeight=np.diag([1, 1, 200]),
                                   controlWeight=np.eye(2))
        ekf = ExtendedKF(cam, robot)
        controller = Controller(
            robot, cam, tlqr, ekf,
            withNoise=True)  #FIXME: withNoise option is not ok

        process = save_trajectory()
        process.next()
        _, (trajectory, true_trajectory) = controller.execute(start, process)
        robot.execute([0, 0])
        print len(trajectory)

        #         for _ in range(filter_stab):
        #             ekf
        #             robot.execute([0, 0])

        print
        print 'Trajectories:'
        for p, tp in zip(trajectory, true_trajectory):
            print 'C:', p.conf, 'T:', tp
        print

        print 'Start theta:', theta
        theta = trajectory[-1].conf[2]
        print 'End theta:', theta
        print
        print
コード例 #4
0
ファイル: tests_bkup.py プロジェクト: wasserfeder/gdtl-firm
def test_controller__():
    isSimulation = False

    if not isSimulation:
        rospy.init_node("ControllerTest", anonymous=True)

    # 1. load mission and environment
    mission = Mission.from_file(
        '/home/cristi/Dropbox/work/workspace_linux/PyFIRM/src/data/simple/mission.yaml'
    )
    logging.info('\n' + str(mission))
    logging.info('Seed: %s', mission.simulation.get('seed', None))

    # load environment
    env = mission.environment
    # load robot model
    assert mission.no_active_vehicles == 1
    robotModel = mission.vehicles.itervalues().next()
    print 'Motion model:', robotModel['motion_model']

    cc = mission.planning['setup']['controller']
    SE2BeliefState.covNormWeight = cc['norm_covariance_weight']
    SE2BeliefState.meanNormWeight = cc['norm_mean_weight']
    SE2BeliefState.reachDist = cc['reach_dist']
    # set the state component norm weights
    SE2BeliefState.normWeights = np.array(cc['norm_state_weights'])
    SE2BeliefState.normWeights[2] = 0

    robot = UnicycleMotionModel(robotModel, isSimulation)
    print 'Time step:', robot.dt

    #     from robots.X80Pro import X80Pro
    #     import time
    #     robot.rate.sleep()
    #
    #     u = 0.25
    #     t0 = time.time()
    #     print 'Applying control', t0, 'control in pulse:', X80Pro.vel2pulse(u)
    # #     robot.execute([0, 6.5]) # TODO: rotation ->  np.pi
    #     robot.execute([u, 0]) # linear
    #     print 'Control sent', time.time() - t0
    #     time.sleep(4-0.25)
    #     print 'Stop robot', time.time() - t0
    #     robot.execute([0, 0])
    #     print 'Done', time.time() - t0
    #     return

    print 'Observation model:', robotModel['observation_model']
    cam = CameraLocalization(robotModel, env, isSimulation=isSimulation)

    def save_trajectory():
        true_traj = []
        traj = []
        while True:
            state = yield traj, true_traj
            print 'save state:', state.conf
            traj.append(state.copy())
            true_traj.append(
                cam.getObservation(state))  #TODO: change this back
#             true_traj.append(cam.getObservationPrediction(state))

    start = SE2BeliefState(0.240, 1.070, 0)
    goal = SE2BeliefState(0.240, 1 + 1.070,
                          np.pi / 2)  # NOTE: end orientation does not matter

    tlqr = SwitchingController(robot,
                               cam,
                               goal,
                               stateWeight=np.diag([1, 1, 200]),
                               controlWeight=np.eye(2))
    ekf = ExtendedKF(cam, robot)
    controller = Controller(robot, cam, tlqr, ekf,
                            withNoise=True)  #FIXME: withNoise option is not ok

    process = save_trajectory()
    process.next()
    _, (trajectory, true_trajectory) = controller.execute(start, process)
    robot.execute([0, 0])
    print len(trajectory)

    #     plt.figure()
    #     plt.axis('equal')
    # #     for lss in tlqr.lss:
    # #         s = lss.x
    # #         plt.arrow(s.x, s.y, 0.1*np.cos(s.yaw), 0.1*np.sin(s.yaw), hold=True, color='g')
    #     for x, y, yaw in true_trajectory:
    #         plt.arrow(x, y, 0.1*np.cos(yaw), 0.1*np.sin(yaw), hold=True, color='k')
    #     for s in trajectory:
    #         plt.arrow(s.x, s.y, 0.1*np.cos(s.yaw), 0.1*np.sin(s.yaw), hold=True, color='b')
    #     s = goal
    #     plt.arrow(s.x, s.y, 0.1*np.cos(s.yaw), 0.1*np.sin(s.yaw), hold=True, color='g')
    #
    # #     plt.xlim([0, 4.13])
    # #     plt.ylim([0, 3.54])
    #     plt.xlim([-0.7, 1.2])
    #     plt.ylim([1.1, 2.7])
    #     plt.show()

    print
コード例 #5
0
ファイル: tests_bkup.py プロジェクト: wasserfeder/gdtl-firm
def test_controller():
#     from optitrack import OptiTrackInterface
    from numpy.linalg import norm
    
    isSimulation = False
    
    if not isSimulation:
        rospy.init_node("ControllerTest", anonymous=True)
    
    # 1. load mission and environment
    mission = Mission.from_file('/home/cristi/Dropbox/work/workspace_linux/PyFIRM/src/data/simple/mission.yaml')
    logging.info('\n' + str(mission))
    logging.info('Seed: %s', mission.simulation.get('seed', None))
     
    # load environment
    env = mission.environment
    # load robot model
    assert mission.no_active_vehicles == 1
    robotModel = mission.vehicles.itervalues().next()
    print 'Motion model:', robotModel['motion_model']
     
    cc = mission.planning['setup']['controller']
    SE2BeliefState.covNormWeight  = 0*cc['norm_covariance_weight']
    SE2BeliefState.meanNormWeight = 1 #cc['norm_mean_weight']
    SE2BeliefState.reachDist = cc['reach_dist']
    # set the state component norm weights
    SE2BeliefState.normWeights = np.array([1, 1, 0]) #cc['norm_state_weights'])
    SE2BeliefState.normWeights[2] = 0
     
    robot = UnicycleMotionModel(robotModel, isSimulation)
    print 'Time step:', robot.dt
    robot.rate.sleep()
    
    print 'Observation model:', robotModel['observation_model']
    cam = CameraLocalization(robotModel, env, isSimulation=isSimulation)
    robot.rate.sleep()
    
    #---------------------------------------------------------------------------
    d_epsilon=0.05 # error bound around waypoint
    a_epsilon = np.deg2rad(15) # error bound for turning
    
#     rid = 1
#     opti = OptiTrackInterface()
#     body = opti.trackInfo()[rid] # get data for rigid body w/ rigid body ID `rid'
#     opti._close()
    x, y, theta = cam.getObservation(None) #body.z, body.x, np.deg2rad(body.yaw)
    print x, y, theta
    #---------------------------------------------------------------------------
    
    def save_trajectory():
        true_traj = []
        traj = []
        while True:
            state = yield traj, true_traj
            print 'save state:', state.conf
            traj.append(state.copy())
            true_traj.append(cam.getObservation(state)) #TODO: change this back
#             true_traj.append(cam.getObservationPrediction(state))
    
#     filter_time = 4 # [sec]
#     filter_stab  = int(filter_time/robot.dt)
#     print 'filter steps:', filter_stab, 'dt:', robot.dt
    path = [(x, y), (x+1, y+1)]#, (x+2, y+1), (x+1, y), (x, y)]
    for (xs, ys), (xg, yg) in zip(path[:-1], path[1:]):
        start = SE2BeliefState(xs, ys, theta)
        goal = SE2BeliefState(xg, yg, np.pi/2) # NOTE: end orientation does not matter
        
        print 'Start:', start.conf, 'Goal:', goal.conf
        
        tlqr = SwitchingController(robot, cam, goal,
                                   stateWeight=np.diag([1, 1, 200]),
                                   controlWeight=np.eye(2))
        ekf = ExtendedKF(cam, robot)
        controller = Controller(robot, cam, tlqr, ekf, withNoise=True) #FIXME: withNoise option is not ok
        
        process = save_trajectory()
        process.next()
        _, (trajectory, true_trajectory) = controller.execute(start, process)
        robot.execute([0, 0])
        print len(trajectory)
        
#         for _ in range(filter_stab):
#             ekf
#             robot.execute([0, 0])
        
        print
        print 'Trajectories:'
        for p, tp in zip(trajectory, true_trajectory):
            print 'C:', p.conf, 'T:', tp
        print
        
        print 'Start theta:', theta
        theta = trajectory[-1].conf[2]
        print 'End theta:', theta
        print
        print
コード例 #6
0
def test_filter():
    #     from optitrack import OptiTrackInterface
    from numpy.linalg import norm
    import time

    isSimulation = False

    if not isSimulation:
        rospy.init_node("ControllerTest", anonymous=True)

    # 1. load mission and environment
    mission = Mission.from_file(
        '/home/cristi/Dropbox/work/workspace_linux/PyFIRM/src/data/simple/mission.yaml'
    )
    logging.info('\n' + str(mission))
    logging.info('Seed: %s', mission.simulation.get('seed', None))

    # load environment
    env = mission.environment
    # load robot model
    assert mission.no_active_vehicles == 1
    robotModel = mission.vehicles.itervalues().next()
    print 'Motion model:', robotModel['motion_model']

    robot = UnicycleMotionModel(robotModel, isSimulation)
    print 'Time step:', robot.dt
    robot.rate.sleep()

    print 'Observation model:', robotModel['observation_model']
    cam = CameraLocalization(robotModel, env, isSimulation=isSimulation)
    robot.rate.sleep()

    #---------------------------------------------------------------------------
    x, y, theta = cam.getObservation(
        None)  #body.z, body.x, np.deg2rad(body.yaw)
    print x, y, theta

    #---------------------------------------------------------------------------

    def save_trajectory():
        true_traj = []
        traj = []
        while True:
            state = yield traj, true_traj
            print 'save state:', state.conf
            traj.append(state.copy())
            true_traj.append(
                cam.getObservation(state))  #TODO: change this back


#             true_traj.append(cam.getObservationPrediction(state))

    goal = SE2BeliefState(x, y, 0)
    tlqr = SwitchingController(robot,
                               cam,
                               goal,
                               stateWeight=np.diag([1, 1, 200]),
                               controlWeight=np.eye(2))

    ekf = ExtendedKF(cam, robot)
    updated_state = SE2BeliefState(x, y, theta, cov=np.eye(3))

    print 'Before filtering', updated_state.conf, 'True:', cam.getObservation(
        updated_state)
    control = np.array([0, 0])
    for _ in it.count():
        z = cam.getObservation(updated_state)
        # apply filter and get state estimate
        currentLS = tlqr.getCurrentLS(0)
        nextLS = tlqr.getNextLS(1)
        updated_state = ekf.evolve(updated_state, control, z, currentLS,
                                   nextLS)

        print 'Filter:', updated_state.conf, 'True:', z

        time.sleep(0.25)

        if rospy.is_shutdown():
            break
コード例 #7
0
def test_controller():
    #     from optitrack import OptiTrackInterface
    from numpy.linalg import norm
    import time, datetime

    isSimulation = False

    if not isSimulation:
        rospy.init_node("ControllerTest", anonymous=True)

    # 1. load mission and environment
    mission = Mission.from_file(
        '/home/cristi/Dropbox/work/workspace_linux/PyFIRM/src/data/simple/mission.yaml'
    )
    logging.info('\n' + str(mission))
    logging.info('Seed: %s', mission.simulation.get('seed', None))

    # load environment
    env = mission.environment
    # load robot model
    assert mission.no_active_vehicles == 1
    robotModel = mission.vehicles.itervalues().next()
    print 'Motion model:', robotModel['motion_model']

    cc = mission.planning['setup']['controller']
    SE2BeliefState.covNormWeight = 0 * cc['norm_covariance_weight']
    SE2BeliefState.meanNormWeight = 1  #cc['norm_mean_weight']
    SE2BeliefState.reachDist = cc['reach_dist']
    # set the state component norm weights
    SE2BeliefState.normWeights = np.array([1, 1,
                                           0])  #cc['norm_state_weights'])
    SE2BeliefState.normWeights[2] = 0

    robot = UnicycleMotionModel(robotModel, isSimulation)
    print 'Time step:', robot.dt
    robot.rate.sleep()

    print 'Observation model:', robotModel['observation_model']
    cam = CameraLocalization(robotModel, env, isSimulation=isSimulation)
    opti = OptitrackLocalization(isSimulation=isSimulation)
    quad = QuadCamPose(isSimulation=isSimulation)
    robot.rate.sleep()

    #---------------------------------------------------------------------------
    d_epsilon = 0.05  # error bound around waypoint
    a_epsilon = np.deg2rad(15)  # error bound for turning

    #     rid = 1
    #     opti = OptiTrackInterface()
    #     body = opti.trackInfo()[rid] # get data for rigid body w/ rigid body ID `rid'
    #     opti._close()
    x, y, theta = cam.getObservation(
        None)  #body.z, body.x, np.deg2rad(body.yaw)
    print x, y, theta

    #---------------------------------------------------------------------------

    def save_trajectory():
        true_traj = []
        traj = []
        optitrack_traj = []
        quad_traj = []
        while True:
            state = yield traj, true_traj, optitrack_traj, quad_traj
            print 'save state:', state.conf
            traj.append(state.copy())
            true_traj.append(
                cam.getObservation(state))  #TODO: change this back
            optitrack_traj.append(opti.getObservation(state))
            quad_traj.append(quad.getObservation(state))
#             true_traj.append(cam.getObservationPrediction(state))

    filter_time = 5  # [sec]
    filter_stab = int(filter_time / robot.dt)
    print 'filter steps:', filter_stab, 'dt:', robot.dt

    xs, ys = x, y
    covs = np.eye(3)

    #     path = np.array([ # larger transition system
    #         [1.0, 2.5, 0.0],
    #         [1.227090539137495, 1.5261366178286393, 0],
    #         [0.7814101593838313, 0.6309556309870786, 0],
    #         [1.3450599380271273, 0.880746156908613, 0],
    #         [2.063849180607642, 0.9785829893820421, 0],
    #         [2.8594440505001724, 1.354833717086771, 0],
    #         [3.187859804988132, 1.976122679525189, 0],
    #         [3.6840077044823207, 2.8443491833405843, 0],
    #         [2.925239900621002, 2.52353894593588, 0],
    #         [2.288019681537405, 2.549151027045657, 0],
    #         [1.9702269162937254, 3.102135677048742, 0],
    #         [1.306980698970712, 3.091532230704365, 0],
    #         [1.0, 2.5, 0.0]
    #     ])

    path = np.array([  # smaller transition system
        #         [1.0, 2.5, 0.0],
        [1.227090539137495, 1.5261366178286393, 0],
        [0.6683476856850583, 0.6968077181658885, 0],
        [1.3618722811762958, 0.7142604793362379, 0],
        [2.059680461093005, 0.9722647716781803, 0],
        [2.935911437513193, 0.49039417072630315, 0],
        [3.5244797253701616, 1.0671446704710397, 0],
        [3.4171462977012945, 1.8636962642083317, 0],
        [3.2481431339499154, 2.580396624830811, 0],
        [2.6199028579323596, 2.5050497919480206, 0],
        [2.143319573133728, 3.0814698610803655, 0],
        [1.3410947476176465, 3.1958386839694723, 0],
        [1.0, 2.5, 0.0]
    ] * 10)

    #     origin = np.array([-0.08, 0.696, 0])
    origin = np.array([0, 0, 0])

    path = [p - origin for p in path]

    print 'Init:', path[0]
    #     return
    #     figure = plt.figure()
    #     figure.add_subplot('111')
    #     axes = figure.axes[0]
    #     axes.axis('equal') # sets aspect ration to 1
    #
    #     b = np.array(env['boundary']['limits'])
    #     plt.xlim(b.T[0] - origin[0])
    #     plt.ylim(b.T[1] - origin[1])
    #
    #     mission.draw_environment(axes, figure, origin=origin[:2])
    #
    #     px, py, _ = np.array(path).T
    #
    #     plt.plot(px, py, 'ko-')
    #
    #     plt.show()
    #     return
    #
    #     path = [(x, y), (x+1, y+1), (x+2, y+1), (x+1, y), (x, y)]
    experiment = 70
    with open('experiment_data_{}.txt'.format(experiment), 'a') as fout:
        t = time.time()
        print >> fout, '#', experiment, '#', t, '#', str(
            datetime.datetime.fromtimestamp(t))

    for xg, yg, _ in path:
        start = SE2BeliefState(xs, ys, theta, cov=covs)
        goal = SE2BeliefState(xg, yg, np.pi /
                              2)  # NOTE: end orientation does not matter

        print 'Start:', start.conf, 'Goal:', goal.conf

        tlqr = SwitchingController(robot,
                                   cam,
                                   goal,
                                   stateWeight=np.diag([1, 1, 200]),
                                   controlWeight=np.eye(2))
        ekf = ExtendedKF(cam, robot)
        controller = Controller(
            robot, cam, tlqr, ekf,
            withNoise=True)  #FIXME: withNoise option is not ok

        process = save_trajectory()
        process.next()
        _, (trajectory, true_trajectory, opti_trajectory,
            quad_traj) = controller.execute(start, process)
        robot.execute([0, 0])
        print len(trajectory)

        print
        print 'Trajectories:'
        with open('experiment_data_{}.txt'.format(experiment), 'a') as fout:
            for p, tp, op, qp in zip(trajectory, true_trajectory,
                                     opti_trajectory, quad_traj):
                print 'C:', p.conf, 'T:', tp, 'O:', op
                print >> fout, '{', '"x": {}, "cov": {}, "filter": {}, "opti" : {}, "quad": {}'.format(
                    list(p.conf), list(np.diag(p.cov)), list(tp), list(op),
                    list(qp)), '}'
            print
            print >> fout
            print 'Start:', xs, ys, theta
            updated_state = trajectory[-1]
            print 'Before filtering', updated_state.conf, 'True:', cam.getObservation(
                updated_state)
            for _ in range(filter_stab):
                updated_state = controller.evolve(updated_state,
                                                  0,
                                                  nocontrol=True)
                print >> fout, '{', '"x": {}, "cov": {}'.format(
                    list(updated_state.conf),
                    list(np.diag(updated_state.cov))), '}'
            xs, ys, theta = updated_state.conf
            covs = updated_state.cov
            print 'End:', xs, ys, theta, 'True:', cam.getObservation(
                updated_state)
            print
            print
            print >> fout
            print >> fout