コード例 #1
0
 def setup(self, mission):
     if mission is None:
         self.isSetup = False
         return
     
     np.random.seed(mission.planning.get('seed', None))
     
     # setting the mean and norm weights (used in reachability check)
     cc = mission.planning['setup']['controller']
     SE2BeliefState.covNormWeight = cc['norm_covariance_weight']
     SE2BeliefState.meanNormWeight = cc['norm_mean_weight']
     SE2BeliefState.reachDist = cc['reach_dist']
     # set the state component norm weights
     SE2BeliefState.normWeights = np.array(cc['norm_state_weights'])
     
     # load environment
     self.env = mission.environment
     # load robot model
     assert mission.no_active_vehicles == 1
     self.robotModel = mission.vehicles.itervalues().next()
     # read the start Pose
     x, y, yaw = self.robotModel['initial_state']
     cov = self.robotModel['initial_covariance']
     self.start = SE2BeliefState(x, y, yaw, cov)
     # read the specification
     self.spec  = mission.specification
     # read planning time
     self.planningTime = mission.planning['planning_time']
     self.planningSteps = mission.planning['planning_steps']
     self.sat_prob_threshold = mission.planning['sat_probability_threshold']
     
     logging.info('Problem configuration is')
     logging.info("Start Pose: %s", str(self.start))
     logging.info("Specification: %s", self.spec)
     logging.info("Planning Time: %f seconds", self.planningTime)
     
     # create the observation model
     observationModel = CameraLocalization(self.robotModel, self.env)
     # create the motion model
     motionModel = UnicycleMotionModel(self.robotModel)
     # create planner
     self.planner = FIRM(self.env, motionModel, observationModel,
                         mission.planning['setup'])
     # set specification
     state_label = self.robotModel['motion_model']['state_label']
     cov_label = self.robotModel['motion_model']['covariance_label']
     data = dict()
     execfile(mission.predicates, data)
     predicates = data['predicates']
     self.planner.obstacles = data['obstacles']
     del data
     assert predicates is not None, \
                         'You need to provide at least an empty dictionary!'
     self.planner.setSpecification(self.spec, state_label=state_label,
                                   cov_label=cov_label,
                                   predicates=predicates)
     # set initial state
     self.planner.addState(self.start, initial=True)
     # set sampler
     self.planner.sampler = SE2StateSampler(self.planner.bounds + np.array([[0.2, 0.2], [-0.2, -0.2]])) #TODO: make this general
コード例 #2
0
ファイル: openloop.py プロジェクト: wasserfeder/gdtl-firm
def run():
    # 0. parse command-line arguments
    parser = argparse.ArgumentParser(
        description=
'''Script to execute an open loop trajectory on the robot. The open loop
trajectory is generated using the offline computed transition system where the
states are projected on the workspace. Also, the specification considered for
synthesis does not include constraints on the uncertainty and must be provided
the user as an LTL formula. It is the responsibility of the user to ensure that
the simplified specification is semantically close to the original GDTL formula.
''',
        epilog=license_text)
    
    parser.add_argument('mission_file', type=str, help='mission file')
    parser.add_argument('ts_file', type=str, help='transition system file')
    parser.add_argument('ltl_spec', type=str,
                        help='LTL (simplified) specification')
    parser.add_argument('-o', '--output-dir', type=str, help='output directory')
    parser.add_argument('-l', '--logfile', type=str, help='log file',
                        default='openloop.log')
    parser.add_argument('-p', '--plot', action='store_true',
                        help='plot ground truth data')
    parser.add_argument('-r', '--robot', action='store', default='ScoutPro1',
                        type=str,
                        help='select the robot to use (default: ScoutPro1)',
                        choices=['X80Pro1', 'X80Pro2', 'ScoutPro1', 'ScoutPro2'])
    parser.add_argument('-i', '--id', action='store', default=1, type=int,
                        help='select the rigid body id for OptiTrack associated with the robot (default: 1)')
    parser.add_argument('--debug', action='store_true', help='debug mode')
    parser.add_argument('-v', '--verbose', action='store_true',
                        help='print/plot extra information for simulation')
    # parse arguments
    args = parser.parse_args()
    # create output directory
    if not os.path.isdir(args.output_dir):
        os.makedirs(args.output_dir)
    # configure logging
    fs, dfs = '%(asctime)s %(levelname)s %(message)s', '%m/%d/%Y %I:%M:%S %p'
    loglevel = logging.DEBUG if args.debug else logging.INFO
    logging.basicConfig(filename=args.logfile, level=loglevel, format=fs, datefmt=dfs)
    if args.verbose:
        root = logging.getLogger()
        ch = logging.StreamHandler(sys.stdout)
        ch.setLevel(loglevel)
        ch.setFormatter(logging.Formatter(fs, dfs))
        root.addHandler(ch)
    
    logging.info('Script arguments: %s, %s', args.robot, args.id)
    
    fcontrols = os.path.join(args.output_dir, 'openloop_controls.txt')
    ftraj = os.path.join(args.output_dir, 'openloop_traj.txt')
    if os.path.isfile(fcontrols) and os.path.isfile(ftraj):
        controls = np.loadtxt(fcontrols, dtype=np.float, delimiter='\t')
        traj = np.loadtxt(ftraj, dtype=np.float, delimiter='\t')
    else:
        # 1. load mission and environment
        mission = Mission.from_file(args.mission_file)
        
        # 2. load transition system
        assert mission.no_active_vehicles == 1
        robotModel = mission.vehicles.itervalues().next()
        
        motionModel = UnicycleMotionModel(robotModel, isSimulation=True)
    #     motionModel = OmnidirectionalMotionModel(robotModel, isSimulation=False)
        ts = ts_load(args.ts_file, mission, motionModel)
        
        # 3. compute satisfying trajectory with respect to the LTL spec
        with open(args.ltl_spec, 'r') as fin:
            ltl_spec = fin.readline().strip()
        traj = compute_satisfying_run(ts, ltl_spec)
        
        # 4. execute satisfying trajectory
        controls = [ts.g[s][t]['control'] for s, t in it.izip(traj[:-1], traj[1:])]
        logging.info('Length of control sequence: %d', len(controls))
        
        # 5. save trajectory and control policy
        np.savetxt(ftraj, traj, delimiter='\t', header=time.asctime())
        np.savetxt(fcontrols, controls, delimiter='\t', header=time.asctime())
    
    executeController(args, controls, traj)
    
    logging.info('Done!')
コード例 #3
0
ファイル: tests_bkup.py プロジェクト: wasserfeder/gdtl-firm
def test_controller():
    #     from optitrack import OptiTrackInterface
    from numpy.linalg import norm

    isSimulation = False

    if not isSimulation:
        rospy.init_node("ControllerTest", anonymous=True)

    # 1. load mission and environment
    mission = Mission.from_file(
        '/home/cristi/Dropbox/work/workspace_linux/PyFIRM/src/data/simple/mission.yaml'
    )
    logging.info('\n' + str(mission))
    logging.info('Seed: %s', mission.simulation.get('seed', None))

    # load environment
    env = mission.environment
    # load robot model
    assert mission.no_active_vehicles == 1
    robotModel = mission.vehicles.itervalues().next()
    print 'Motion model:', robotModel['motion_model']

    cc = mission.planning['setup']['controller']
    SE2BeliefState.covNormWeight = 0 * cc['norm_covariance_weight']
    SE2BeliefState.meanNormWeight = 1  #cc['norm_mean_weight']
    SE2BeliefState.reachDist = cc['reach_dist']
    # set the state component norm weights
    SE2BeliefState.normWeights = np.array([1, 1,
                                           0])  #cc['norm_state_weights'])
    SE2BeliefState.normWeights[2] = 0

    robot = UnicycleMotionModel(robotModel, isSimulation)
    print 'Time step:', robot.dt
    robot.rate.sleep()

    print 'Observation model:', robotModel['observation_model']
    cam = CameraLocalization(robotModel, env, isSimulation=isSimulation)
    robot.rate.sleep()

    #---------------------------------------------------------------------------
    d_epsilon = 0.05  # error bound around waypoint
    a_epsilon = np.deg2rad(15)  # error bound for turning

    #     rid = 1
    #     opti = OptiTrackInterface()
    #     body = opti.trackInfo()[rid] # get data for rigid body w/ rigid body ID `rid'
    #     opti._close()
    x, y, theta = cam.getObservation(
        None)  #body.z, body.x, np.deg2rad(body.yaw)
    print x, y, theta

    #---------------------------------------------------------------------------

    def save_trajectory():
        true_traj = []
        traj = []
        while True:
            state = yield traj, true_traj
            print 'save state:', state.conf
            traj.append(state.copy())
            true_traj.append(
                cam.getObservation(state))  #TODO: change this back


#             true_traj.append(cam.getObservationPrediction(state))

#     filter_time = 4 # [sec]
#     filter_stab  = int(filter_time/robot.dt)
#     print 'filter steps:', filter_stab, 'dt:', robot.dt

    path = [(x, y), (x + 1, y + 1)]  #, (x+2, y+1), (x+1, y), (x, y)]
    for (xs, ys), (xg, yg) in zip(path[:-1], path[1:]):
        start = SE2BeliefState(xs, ys, theta)
        goal = SE2BeliefState(xg, yg, np.pi /
                              2)  # NOTE: end orientation does not matter

        print 'Start:', start.conf, 'Goal:', goal.conf

        tlqr = SwitchingController(robot,
                                   cam,
                                   goal,
                                   stateWeight=np.diag([1, 1, 200]),
                                   controlWeight=np.eye(2))
        ekf = ExtendedKF(cam, robot)
        controller = Controller(
            robot, cam, tlqr, ekf,
            withNoise=True)  #FIXME: withNoise option is not ok

        process = save_trajectory()
        process.next()
        _, (trajectory, true_trajectory) = controller.execute(start, process)
        robot.execute([0, 0])
        print len(trajectory)

        #         for _ in range(filter_stab):
        #             ekf
        #             robot.execute([0, 0])

        print
        print 'Trajectories:'
        for p, tp in zip(trajectory, true_trajectory):
            print 'C:', p.conf, 'T:', tp
        print

        print 'Start theta:', theta
        theta = trajectory[-1].conf[2]
        print 'End theta:', theta
        print
        print
コード例 #4
0
ファイル: tests_bkup.py プロジェクト: wasserfeder/gdtl-firm
def test_unicycle_model():
    isSimulation = True

    if not isSimulation:
        rospy.init_node("MotionModelTest", anonymous=True)

    # 1. load mission and environment
    mission = Mission.from_file(
        '/home/cristi/Dropbox/work/workspace_linux/PyFIRM/src/data/simple/mission.yaml'
    )
    logging.info('\n' + str(mission))
    logging.info('Seed: %s', mission.simulation.get('seed', None))

    # load environment
    env = mission.environment
    # load robot model
    assert mission.no_active_vehicles == 1
    robotModel = mission.vehicles.itervalues().next()
    print 'Motion model:', robotModel['motion_model']

    robot = UnicycleMotionModel(robotModel)
    print 'Time step:', robot.dt

    state = SE2BeliefState(1, 2, np.pi / 4)
    control = np.array([200, 100])

    print 'State Jacobian:'
    print robot.getStateJacobian(state, control)
    print 'Control Jacobian:'
    print robot.getControlJacobian(state, control)
    print 'Noise Jacobian:'
    print robot.getNoiseJacobian(state, control)
    print 'Noise Covariance Matrix'
    print robot.processNoiseCovariance(state, control)

    start = SE2BeliefState(0, 0, 0)
    goal = SE2BeliefState(1, 1, np.pi / 2)

    print 'Open loop path:'
    policy = robot.generateOpenLoopControls(start, goal)
    aux_state = start.copy()
    trajectory = [start]
    print 'Start:', aux_state.getXYYaw()
    for u in policy:
        aux_state = robot.evolve(aux_state, u)
        print 'Control:', u, 'State:', aux_state.getXYYaw()
        trajectory.append(aux_state)

    print len(policy)

    print 'Generate sample path from open loop policy'
    aux_state = start.copy()
    sample_path = [aux_state]  # without initial uncertainty
    for u in policy:
        w = robot.generateNoise(aux_state, u)
        aux_state = robot.evolve(aux_state, u, w)
        print 'Control:', u, 'Noise:', w, 'State:', aux_state
        sample_path.append(aux_state)

    plt.figure()
    for s, sn in zip(trajectory, sample_path):
        plt.arrow(s.x,
                  s.y,
                  0.1 * np.cos(s.yaw),
                  0.1 * np.sin(s.yaw),
                  hold=True,
                  color='k')
        plt.arrow(sn.x,
                  sn.y,
                  0.1 * np.cos(sn.yaw),
                  0.1 * np.sin(sn.yaw),
                  hold=True,
                  color='b')

    plt.xlim([-0.3, 1.3])
    plt.ylim([-0.3, 1.3])
    plt.show()

    print

    if not isSimulation:
        rospy.spin()
コード例 #5
0
ファイル: tests_bkup.py プロジェクト: wasserfeder/gdtl-firm
def test_controller__():
    isSimulation = False

    if not isSimulation:
        rospy.init_node("ControllerTest", anonymous=True)

    # 1. load mission and environment
    mission = Mission.from_file(
        '/home/cristi/Dropbox/work/workspace_linux/PyFIRM/src/data/simple/mission.yaml'
    )
    logging.info('\n' + str(mission))
    logging.info('Seed: %s', mission.simulation.get('seed', None))

    # load environment
    env = mission.environment
    # load robot model
    assert mission.no_active_vehicles == 1
    robotModel = mission.vehicles.itervalues().next()
    print 'Motion model:', robotModel['motion_model']

    cc = mission.planning['setup']['controller']
    SE2BeliefState.covNormWeight = cc['norm_covariance_weight']
    SE2BeliefState.meanNormWeight = cc['norm_mean_weight']
    SE2BeliefState.reachDist = cc['reach_dist']
    # set the state component norm weights
    SE2BeliefState.normWeights = np.array(cc['norm_state_weights'])
    SE2BeliefState.normWeights[2] = 0

    robot = UnicycleMotionModel(robotModel, isSimulation)
    print 'Time step:', robot.dt

    #     from robots.X80Pro import X80Pro
    #     import time
    #     robot.rate.sleep()
    #
    #     u = 0.25
    #     t0 = time.time()
    #     print 'Applying control', t0, 'control in pulse:', X80Pro.vel2pulse(u)
    # #     robot.execute([0, 6.5]) # TODO: rotation ->  np.pi
    #     robot.execute([u, 0]) # linear
    #     print 'Control sent', time.time() - t0
    #     time.sleep(4-0.25)
    #     print 'Stop robot', time.time() - t0
    #     robot.execute([0, 0])
    #     print 'Done', time.time() - t0
    #     return

    print 'Observation model:', robotModel['observation_model']
    cam = CameraLocalization(robotModel, env, isSimulation=isSimulation)

    def save_trajectory():
        true_traj = []
        traj = []
        while True:
            state = yield traj, true_traj
            print 'save state:', state.conf
            traj.append(state.copy())
            true_traj.append(
                cam.getObservation(state))  #TODO: change this back
#             true_traj.append(cam.getObservationPrediction(state))

    start = SE2BeliefState(0.240, 1.070, 0)
    goal = SE2BeliefState(0.240, 1 + 1.070,
                          np.pi / 2)  # NOTE: end orientation does not matter

    tlqr = SwitchingController(robot,
                               cam,
                               goal,
                               stateWeight=np.diag([1, 1, 200]),
                               controlWeight=np.eye(2))
    ekf = ExtendedKF(cam, robot)
    controller = Controller(robot, cam, tlqr, ekf,
                            withNoise=True)  #FIXME: withNoise option is not ok

    process = save_trajectory()
    process.next()
    _, (trajectory, true_trajectory) = controller.execute(start, process)
    robot.execute([0, 0])
    print len(trajectory)

    #     plt.figure()
    #     plt.axis('equal')
    # #     for lss in tlqr.lss:
    # #         s = lss.x
    # #         plt.arrow(s.x, s.y, 0.1*np.cos(s.yaw), 0.1*np.sin(s.yaw), hold=True, color='g')
    #     for x, y, yaw in true_trajectory:
    #         plt.arrow(x, y, 0.1*np.cos(yaw), 0.1*np.sin(yaw), hold=True, color='k')
    #     for s in trajectory:
    #         plt.arrow(s.x, s.y, 0.1*np.cos(s.yaw), 0.1*np.sin(s.yaw), hold=True, color='b')
    #     s = goal
    #     plt.arrow(s.x, s.y, 0.1*np.cos(s.yaw), 0.1*np.sin(s.yaw), hold=True, color='g')
    #
    # #     plt.xlim([0, 4.13])
    # #     plt.ylim([0, 3.54])
    #     plt.xlim([-0.7, 1.2])
    #     plt.ylim([1.1, 2.7])
    #     plt.show()

    print
コード例 #6
0
ファイル: tests_bkup.py プロジェクト: wasserfeder/gdtl-firm
def test_controller():
#     from optitrack import OptiTrackInterface
    from numpy.linalg import norm
    
    isSimulation = False
    
    if not isSimulation:
        rospy.init_node("ControllerTest", anonymous=True)
    
    # 1. load mission and environment
    mission = Mission.from_file('/home/cristi/Dropbox/work/workspace_linux/PyFIRM/src/data/simple/mission.yaml')
    logging.info('\n' + str(mission))
    logging.info('Seed: %s', mission.simulation.get('seed', None))
     
    # load environment
    env = mission.environment
    # load robot model
    assert mission.no_active_vehicles == 1
    robotModel = mission.vehicles.itervalues().next()
    print 'Motion model:', robotModel['motion_model']
     
    cc = mission.planning['setup']['controller']
    SE2BeliefState.covNormWeight  = 0*cc['norm_covariance_weight']
    SE2BeliefState.meanNormWeight = 1 #cc['norm_mean_weight']
    SE2BeliefState.reachDist = cc['reach_dist']
    # set the state component norm weights
    SE2BeliefState.normWeights = np.array([1, 1, 0]) #cc['norm_state_weights'])
    SE2BeliefState.normWeights[2] = 0
     
    robot = UnicycleMotionModel(robotModel, isSimulation)
    print 'Time step:', robot.dt
    robot.rate.sleep()
    
    print 'Observation model:', robotModel['observation_model']
    cam = CameraLocalization(robotModel, env, isSimulation=isSimulation)
    robot.rate.sleep()
    
    #---------------------------------------------------------------------------
    d_epsilon=0.05 # error bound around waypoint
    a_epsilon = np.deg2rad(15) # error bound for turning
    
#     rid = 1
#     opti = OptiTrackInterface()
#     body = opti.trackInfo()[rid] # get data for rigid body w/ rigid body ID `rid'
#     opti._close()
    x, y, theta = cam.getObservation(None) #body.z, body.x, np.deg2rad(body.yaw)
    print x, y, theta
    #---------------------------------------------------------------------------
    
    def save_trajectory():
        true_traj = []
        traj = []
        while True:
            state = yield traj, true_traj
            print 'save state:', state.conf
            traj.append(state.copy())
            true_traj.append(cam.getObservation(state)) #TODO: change this back
#             true_traj.append(cam.getObservationPrediction(state))
    
#     filter_time = 4 # [sec]
#     filter_stab  = int(filter_time/robot.dt)
#     print 'filter steps:', filter_stab, 'dt:', robot.dt
    path = [(x, y), (x+1, y+1)]#, (x+2, y+1), (x+1, y), (x, y)]
    for (xs, ys), (xg, yg) in zip(path[:-1], path[1:]):
        start = SE2BeliefState(xs, ys, theta)
        goal = SE2BeliefState(xg, yg, np.pi/2) # NOTE: end orientation does not matter
        
        print 'Start:', start.conf, 'Goal:', goal.conf
        
        tlqr = SwitchingController(robot, cam, goal,
                                   stateWeight=np.diag([1, 1, 200]),
                                   controlWeight=np.eye(2))
        ekf = ExtendedKF(cam, robot)
        controller = Controller(robot, cam, tlqr, ekf, withNoise=True) #FIXME: withNoise option is not ok
        
        process = save_trajectory()
        process.next()
        _, (trajectory, true_trajectory) = controller.execute(start, process)
        robot.execute([0, 0])
        print len(trajectory)
        
#         for _ in range(filter_stab):
#             ekf
#             robot.execute([0, 0])
        
        print
        print 'Trajectories:'
        for p, tp in zip(trajectory, true_trajectory):
            print 'C:', p.conf, 'T:', tp
        print
        
        print 'Start theta:', theta
        theta = trajectory[-1].conf[2]
        print 'End theta:', theta
        print
        print
コード例 #7
0
ファイル: tests_bkup.py プロジェクト: wasserfeder/gdtl-firm
def test_unicycle_model():
    isSimulation = True
    
    if not isSimulation:
        rospy.init_node("MotionModelTest", anonymous=True)
    
    # 1. load mission and environment
    mission = Mission.from_file('/home/cristi/Dropbox/work/workspace_linux/PyFIRM/src/data/simple/mission.yaml')
    logging.info('\n' + str(mission))
    logging.info('Seed: %s', mission.simulation.get('seed', None))
    
    # load environment
    env = mission.environment
    # load robot model
    assert mission.no_active_vehicles == 1
    robotModel = mission.vehicles.itervalues().next()
    print 'Motion model:', robotModel['motion_model']
    
    robot = UnicycleMotionModel(robotModel)
    print 'Time step:', robot.dt
    
    state = SE2BeliefState(1, 2, np.pi/4)
    control = np.array([200, 100])
    
    print 'State Jacobian:'
    print robot.getStateJacobian(state, control)
    print 'Control Jacobian:'
    print robot.getControlJacobian(state, control)
    print 'Noise Jacobian:'
    print robot.getNoiseJacobian(state, control)
    print 'Noise Covariance Matrix'
    print robot.processNoiseCovariance(state, control)
    
    start = SE2BeliefState(0, 0, 0)
    goal = SE2BeliefState(1, 1, np.pi/2)
    
    print 'Open loop path:'
    policy = robot.generateOpenLoopControls(start, goal)
    aux_state = start.copy()
    trajectory = [start]
    print 'Start:', aux_state.getXYYaw()
    for u in policy:
        aux_state = robot.evolve(aux_state, u)
        print 'Control:', u, 'State:', aux_state.getXYYaw()
        trajectory.append(aux_state)
        
    print len(policy)
    
    print 'Generate sample path from open loop policy'
    aux_state = start.copy()
    sample_path = [aux_state] # without initial uncertainty
    for u in policy:
        w = robot.generateNoise(aux_state, u)
        aux_state = robot.evolve(aux_state, u, w)
        print 'Control:', u, 'Noise:', w, 'State:', aux_state
        sample_path.append(aux_state)
    
    plt.figure()
    for s, sn in zip(trajectory, sample_path):
        plt.arrow(s.x, s.y, 0.1*np.cos(s.yaw), 0.1*np.sin(s.yaw), hold=True, color='k')
        plt.arrow(sn.x, sn.y, 0.1*np.cos(sn.yaw), 0.1*np.sin(sn.yaw), hold=True, color='b')
    
    plt.xlim([-0.3, 1.3])
    plt.ylim([-0.3, 1.3])
    plt.show()
    
    print 
    
    if not isSimulation:
        rospy.spin()
コード例 #8
0
ファイル: tests_bkup.py プロジェクト: wasserfeder/gdtl-firm
def test_controller__():
    isSimulation = False
    
    if not isSimulation:
        rospy.init_node("ControllerTest", anonymous=True)
    
    # 1. load mission and environment
    mission = Mission.from_file('/home/cristi/Dropbox/work/workspace_linux/PyFIRM/src/data/simple/mission.yaml')
    logging.info('\n' + str(mission))
    logging.info('Seed: %s', mission.simulation.get('seed', None))
    
    # load environment
    env = mission.environment
    # load robot model
    assert mission.no_active_vehicles == 1
    robotModel = mission.vehicles.itervalues().next()
    print 'Motion model:', robotModel['motion_model']
    
    cc = mission.planning['setup']['controller']
    SE2BeliefState.covNormWeight  = cc['norm_covariance_weight']
    SE2BeliefState.meanNormWeight = cc['norm_mean_weight']
    SE2BeliefState.reachDist = cc['reach_dist']
    # set the state component norm weights
    SE2BeliefState.normWeights = np.array(cc['norm_state_weights'])
    SE2BeliefState.normWeights[2] = 0
    
    robot = UnicycleMotionModel(robotModel, isSimulation)
    print 'Time step:', robot.dt
    
#     from robots.X80Pro import X80Pro
#     import time
#     robot.rate.sleep()
#      
#     u = 0.25
#     t0 = time.time()
#     print 'Applying control', t0, 'control in pulse:', X80Pro.vel2pulse(u)
# #     robot.execute([0, 6.5]) # TODO: rotation ->  np.pi
#     robot.execute([u, 0]) # linear
#     print 'Control sent', time.time() - t0
#     time.sleep(4-0.25)
#     print 'Stop robot', time.time() - t0
#     robot.execute([0, 0])
#     print 'Done', time.time() - t0
#     return
    
    print 'Observation model:', robotModel['observation_model']
    cam = CameraLocalization(robotModel, env, isSimulation=isSimulation)
    
    def save_trajectory():
        true_traj = []
        traj = []
        while True:
            state = yield traj, true_traj
            print 'save state:', state.conf
            traj.append(state.copy())
            true_traj.append(cam.getObservation(state)) #TODO: change this back
#             true_traj.append(cam.getObservationPrediction(state))
    
    start = SE2BeliefState(0.240, 1.070, 0)
    goal = SE2BeliefState(0.240, 1 + 1.070, np.pi/2) # NOTE: end orientation does not matter
    
    tlqr = SwitchingController(robot, cam, goal,
                               stateWeight=np.diag([1, 1, 200]),
                               controlWeight=np.eye(2))
    ekf = ExtendedKF(cam, robot)
    controller = Controller(robot, cam, tlqr, ekf, withNoise=True) #FIXME: withNoise option is not ok
    
    process = save_trajectory()
    process.next()
    _, (trajectory, true_trajectory) = controller.execute(start, process)
    robot.execute([0, 0])
    print len(trajectory)
    
#     plt.figure()
#     plt.axis('equal')
# #     for lss in tlqr.lss:
# #         s = lss.x
# #         plt.arrow(s.x, s.y, 0.1*np.cos(s.yaw), 0.1*np.sin(s.yaw), hold=True, color='g')
#     for x, y, yaw in true_trajectory:
#         plt.arrow(x, y, 0.1*np.cos(yaw), 0.1*np.sin(yaw), hold=True, color='k')
#     for s in trajectory:
#         plt.arrow(s.x, s.y, 0.1*np.cos(s.yaw), 0.1*np.sin(s.yaw), hold=True, color='b')
#     s = goal
#     plt.arrow(s.x, s.y, 0.1*np.cos(s.yaw), 0.1*np.sin(s.yaw), hold=True, color='g')
#     
# #     plt.xlim([0, 4.13])
# #     plt.ylim([0, 3.54])
#     plt.xlim([-0.7, 1.2])
#     plt.ylim([1.1, 2.7])
#     plt.show()
    
    print
コード例 #9
0
def test_filter():
    #     from optitrack import OptiTrackInterface
    from numpy.linalg import norm
    import time

    isSimulation = False

    if not isSimulation:
        rospy.init_node("ControllerTest", anonymous=True)

    # 1. load mission and environment
    mission = Mission.from_file(
        '/home/cristi/Dropbox/work/workspace_linux/PyFIRM/src/data/simple/mission.yaml'
    )
    logging.info('\n' + str(mission))
    logging.info('Seed: %s', mission.simulation.get('seed', None))

    # load environment
    env = mission.environment
    # load robot model
    assert mission.no_active_vehicles == 1
    robotModel = mission.vehicles.itervalues().next()
    print 'Motion model:', robotModel['motion_model']

    robot = UnicycleMotionModel(robotModel, isSimulation)
    print 'Time step:', robot.dt
    robot.rate.sleep()

    print 'Observation model:', robotModel['observation_model']
    cam = CameraLocalization(robotModel, env, isSimulation=isSimulation)
    robot.rate.sleep()

    #---------------------------------------------------------------------------
    x, y, theta = cam.getObservation(
        None)  #body.z, body.x, np.deg2rad(body.yaw)
    print x, y, theta

    #---------------------------------------------------------------------------

    def save_trajectory():
        true_traj = []
        traj = []
        while True:
            state = yield traj, true_traj
            print 'save state:', state.conf
            traj.append(state.copy())
            true_traj.append(
                cam.getObservation(state))  #TODO: change this back


#             true_traj.append(cam.getObservationPrediction(state))

    goal = SE2BeliefState(x, y, 0)
    tlqr = SwitchingController(robot,
                               cam,
                               goal,
                               stateWeight=np.diag([1, 1, 200]),
                               controlWeight=np.eye(2))

    ekf = ExtendedKF(cam, robot)
    updated_state = SE2BeliefState(x, y, theta, cov=np.eye(3))

    print 'Before filtering', updated_state.conf, 'True:', cam.getObservation(
        updated_state)
    control = np.array([0, 0])
    for _ in it.count():
        z = cam.getObservation(updated_state)
        # apply filter and get state estimate
        currentLS = tlqr.getCurrentLS(0)
        nextLS = tlqr.getNextLS(1)
        updated_state = ekf.evolve(updated_state, control, z, currentLS,
                                   nextLS)

        print 'Filter:', updated_state.conf, 'True:', z

        time.sleep(0.25)

        if rospy.is_shutdown():
            break
コード例 #10
0
def test_controller():
    #     from optitrack import OptiTrackInterface
    from numpy.linalg import norm
    import time, datetime

    isSimulation = False

    if not isSimulation:
        rospy.init_node("ControllerTest", anonymous=True)

    # 1. load mission and environment
    mission = Mission.from_file(
        '/home/cristi/Dropbox/work/workspace_linux/PyFIRM/src/data/simple/mission.yaml'
    )
    logging.info('\n' + str(mission))
    logging.info('Seed: %s', mission.simulation.get('seed', None))

    # load environment
    env = mission.environment
    # load robot model
    assert mission.no_active_vehicles == 1
    robotModel = mission.vehicles.itervalues().next()
    print 'Motion model:', robotModel['motion_model']

    cc = mission.planning['setup']['controller']
    SE2BeliefState.covNormWeight = 0 * cc['norm_covariance_weight']
    SE2BeliefState.meanNormWeight = 1  #cc['norm_mean_weight']
    SE2BeliefState.reachDist = cc['reach_dist']
    # set the state component norm weights
    SE2BeliefState.normWeights = np.array([1, 1,
                                           0])  #cc['norm_state_weights'])
    SE2BeliefState.normWeights[2] = 0

    robot = UnicycleMotionModel(robotModel, isSimulation)
    print 'Time step:', robot.dt
    robot.rate.sleep()

    print 'Observation model:', robotModel['observation_model']
    cam = CameraLocalization(robotModel, env, isSimulation=isSimulation)
    opti = OptitrackLocalization(isSimulation=isSimulation)
    quad = QuadCamPose(isSimulation=isSimulation)
    robot.rate.sleep()

    #---------------------------------------------------------------------------
    d_epsilon = 0.05  # error bound around waypoint
    a_epsilon = np.deg2rad(15)  # error bound for turning

    #     rid = 1
    #     opti = OptiTrackInterface()
    #     body = opti.trackInfo()[rid] # get data for rigid body w/ rigid body ID `rid'
    #     opti._close()
    x, y, theta = cam.getObservation(
        None)  #body.z, body.x, np.deg2rad(body.yaw)
    print x, y, theta

    #---------------------------------------------------------------------------

    def save_trajectory():
        true_traj = []
        traj = []
        optitrack_traj = []
        quad_traj = []
        while True:
            state = yield traj, true_traj, optitrack_traj, quad_traj
            print 'save state:', state.conf
            traj.append(state.copy())
            true_traj.append(
                cam.getObservation(state))  #TODO: change this back
            optitrack_traj.append(opti.getObservation(state))
            quad_traj.append(quad.getObservation(state))
#             true_traj.append(cam.getObservationPrediction(state))

    filter_time = 5  # [sec]
    filter_stab = int(filter_time / robot.dt)
    print 'filter steps:', filter_stab, 'dt:', robot.dt

    xs, ys = x, y
    covs = np.eye(3)

    #     path = np.array([ # larger transition system
    #         [1.0, 2.5, 0.0],
    #         [1.227090539137495, 1.5261366178286393, 0],
    #         [0.7814101593838313, 0.6309556309870786, 0],
    #         [1.3450599380271273, 0.880746156908613, 0],
    #         [2.063849180607642, 0.9785829893820421, 0],
    #         [2.8594440505001724, 1.354833717086771, 0],
    #         [3.187859804988132, 1.976122679525189, 0],
    #         [3.6840077044823207, 2.8443491833405843, 0],
    #         [2.925239900621002, 2.52353894593588, 0],
    #         [2.288019681537405, 2.549151027045657, 0],
    #         [1.9702269162937254, 3.102135677048742, 0],
    #         [1.306980698970712, 3.091532230704365, 0],
    #         [1.0, 2.5, 0.0]
    #     ])

    path = np.array([  # smaller transition system
        #         [1.0, 2.5, 0.0],
        [1.227090539137495, 1.5261366178286393, 0],
        [0.6683476856850583, 0.6968077181658885, 0],
        [1.3618722811762958, 0.7142604793362379, 0],
        [2.059680461093005, 0.9722647716781803, 0],
        [2.935911437513193, 0.49039417072630315, 0],
        [3.5244797253701616, 1.0671446704710397, 0],
        [3.4171462977012945, 1.8636962642083317, 0],
        [3.2481431339499154, 2.580396624830811, 0],
        [2.6199028579323596, 2.5050497919480206, 0],
        [2.143319573133728, 3.0814698610803655, 0],
        [1.3410947476176465, 3.1958386839694723, 0],
        [1.0, 2.5, 0.0]
    ] * 10)

    #     origin = np.array([-0.08, 0.696, 0])
    origin = np.array([0, 0, 0])

    path = [p - origin for p in path]

    print 'Init:', path[0]
    #     return
    #     figure = plt.figure()
    #     figure.add_subplot('111')
    #     axes = figure.axes[0]
    #     axes.axis('equal') # sets aspect ration to 1
    #
    #     b = np.array(env['boundary']['limits'])
    #     plt.xlim(b.T[0] - origin[0])
    #     plt.ylim(b.T[1] - origin[1])
    #
    #     mission.draw_environment(axes, figure, origin=origin[:2])
    #
    #     px, py, _ = np.array(path).T
    #
    #     plt.plot(px, py, 'ko-')
    #
    #     plt.show()
    #     return
    #
    #     path = [(x, y), (x+1, y+1), (x+2, y+1), (x+1, y), (x, y)]
    experiment = 70
    with open('experiment_data_{}.txt'.format(experiment), 'a') as fout:
        t = time.time()
        print >> fout, '#', experiment, '#', t, '#', str(
            datetime.datetime.fromtimestamp(t))

    for xg, yg, _ in path:
        start = SE2BeliefState(xs, ys, theta, cov=covs)
        goal = SE2BeliefState(xg, yg, np.pi /
                              2)  # NOTE: end orientation does not matter

        print 'Start:', start.conf, 'Goal:', goal.conf

        tlqr = SwitchingController(robot,
                                   cam,
                                   goal,
                                   stateWeight=np.diag([1, 1, 200]),
                                   controlWeight=np.eye(2))
        ekf = ExtendedKF(cam, robot)
        controller = Controller(
            robot, cam, tlqr, ekf,
            withNoise=True)  #FIXME: withNoise option is not ok

        process = save_trajectory()
        process.next()
        _, (trajectory, true_trajectory, opti_trajectory,
            quad_traj) = controller.execute(start, process)
        robot.execute([0, 0])
        print len(trajectory)

        print
        print 'Trajectories:'
        with open('experiment_data_{}.txt'.format(experiment), 'a') as fout:
            for p, tp, op, qp in zip(trajectory, true_trajectory,
                                     opti_trajectory, quad_traj):
                print 'C:', p.conf, 'T:', tp, 'O:', op
                print >> fout, '{', '"x": {}, "cov": {}, "filter": {}, "opti" : {}, "quad": {}'.format(
                    list(p.conf), list(np.diag(p.cov)), list(tp), list(op),
                    list(qp)), '}'
            print
            print >> fout
            print 'Start:', xs, ys, theta
            updated_state = trajectory[-1]
            print 'Before filtering', updated_state.conf, 'True:', cam.getObservation(
                updated_state)
            for _ in range(filter_stab):
                updated_state = controller.evolve(updated_state,
                                                  0,
                                                  nocontrol=True)
                print >> fout, '{', '"x": {}, "cov": {}'.format(
                    list(updated_state.conf),
                    list(np.diag(updated_state.cov))), '}'
            xs, ys, theta = updated_state.conf
            covs = updated_state.cov
            print 'End:', xs, ys, theta, 'True:', cam.getObservation(
                updated_state)
            print
            print
            print >> fout
            print >> fout