def test_bow(self): model = Model('bow', self.gmm) model.compute_kernels([self.tr_fn], [self.te_fn]) Kxx, Kyx = model.get_kernels() evaluation = Evaluation(self.dataset.DATASET) score = evaluation.fit(Kxx, self.cx).score(Kyx, self.cy) assert_allclose(score, self.expected_scores['bow'], rtol=1e-4)
def evaluate_given_dataset(dataset, **kwargs): model_type = kwargs.get('model_type', 'fv') sstats_folder = dataset.SSTATS_DIR tr_fn = os.path.join(sstats_folder, 'train.dat') tr_labels_fn = os.path.join(sstats_folder, 'labels_train.info') te_fn = os.path.join(sstats_folder, 'test.dat') te_labels_fn = os.path.join(sstats_folder, 'labels_test.info') gmm = load_gmm(dataset.GMM) tr_labels = pickle.load(open(tr_labels_fn, 'r')) te_labels = pickle.load(open(te_labels_fn, 'r')) model = Model(model_type, gmm) model.compute_kernels([tr_fn], [te_fn]) Kxx, Kyx = model.get_kernels() evaluation = Evaluation(dataset.DATASET, **kwargs) print evaluation.fit(Kxx, tr_labels).score(Kyx, te_labels)