コード例 #1
0
ファイル: RingFit.py プロジェクト: keshav-rathor/1st-upload
    def __init__(self,fn=None,pars=None,x0=None,y0=None,r0=None,sigma=None,IMG=None,mask=None):
        self.mask = mask
        self.IMG = mask

        self.pars = Parameters()
        self.pars.add('amp', 2,min=0,max=10)
        self.pars.add('bg', 1)
        self.pars.add('bgexp', 4.,min=1.,max=4.)
        self.pars.add('r0', 1500,min=1000,max=2000)#,vary=False)
        self.pars.add('sigma', 2,min=.1, max=100)#,vary=False)
        self.pars.add('x0',XCEN,min=XCEN-10,max=XCEN+10)
        self.pars.add('y0',YCEN,min=YCEN-10,max=YCEN+10)
        super(RingFit,self).__init__(fn=fn,pars=pars)
コード例 #2
0
def histfitqrings(histstot, qx, Ix=None, PF=False):
    ''' fit the hists'''
    histspar = np.zeros((histstot.shape[0], 2))
    histsparpois = histspar * 0
    histsfit = histstot * 0
    histsfitpois = histstot * 0

    for i in range(histstot.shape[0]):
        if (PF):
            print("iteration {} or {}".format(i, histstot.shape[0]))
        #kbar = np.interp(i,sqx,sqy)
        pars = Parameters()
        pars.add('M', value=4, vary=True)
        if (Ix is not None):
            pars.add('kbar', value=Ix[i], vary=False)
        else:
            pars.add('kbar', value=2., vary=True)
        xdata = np.arange(histstot.shape[1])
        ydata = histstot[i]
        fitfn = FitObject(negbinomialdist, pars)
        fitfnpois = FitObject(poissondist, pars)
        fitfn.fit(xdata, ydata)
        fitfnpois.fit(xdata, ydata)
        pars = fitfn.mn.params
        parspois = fitfnpois.mn.params
        histsfit[i] = fitfn.fn(xdata, pars)
        histsfitpois[i] = fitfnpois.fn(xdata, pars)
        histspar[i] = np.array([pars['kbar'].value, pars['M'].value])
        histsparpois[i] = np.array(
            [parspois['kbar'].value, parspois['M'].value])
    return histsfit, histspar, histsfitpois, histsparpois
コード例 #3
0
    def __init__(self, fn=None, pars=None, IMG=None, mask=None):
        self.mask = mask
        self.IMG = mask
        if (pars is None):
            pars = {
                'amp': 1,
                'x0': 0.,
                'y0': 0,
                'sigmax': 1.,
                'sigmay': 1.,
                'const': 0
            }

        if (hasattr(pars['amp'], "value")):
            self.pars = pars
        else:
            self.pars = Parameters()
            for key in pars:
                self.pars.add(key, pars[key])

        super(Gauss2DFitter, self).__init__(fn=gauss2Dfitfunc, pars=pars)
コード例 #4
0
def twolinefit(xdata,
               ydata,
               m1=None,
               m2=None,
               xc=None,
               yc=None,
               varyslopes=True,
               plotwin=None):
    ''' Two line fit func
        fits to two lines with slopes m1 and m2 intersecting at point (xc, yc)
        m1= ,m2= : set m1 and m2 initial parameters (not necessary)
            Default is 1
        varyslopes= True : set to false to fix slopes (need to set m1 and m2 then)
        set plotwin to a window number to plot to that window number
    '''

    if (m1 is None):
        m1 = 1
    if (m2 is None):
        m2 = 1

    if (xc is None):
        xc = 0
    if (yc is None):
        yc = 0

    pars = Parameters()
    pars.add('m1', value=m1, vary=varyslopes)
    pars.add('m2', value=m2, vary=varyslopes)
    pars.add('xc', value=xc, vary=True)
    pars.add('yc', value=yc, vary=True)

    fitfn = FitObject(fn=twolinefitfunc, pars=pars)
    fitfn.fit(xdata, ydata)

    yfit = twolinefitfunc(xdata, fitfn.pars)
    if (plotwin is not None):
        plt.figure(plotwin)
        plt.plot(xdata, ydata, 'ko')
        #compute with finer spacing
        xfit = np.linspace(np.min(xdata), np.max(xdata))
        yfit2 = twolinefitfunc(xfit, fitfn.pars)
        plt.plot(xfit, yfit2, 'r')
    pars = fitfn.pars
    return yfit, pars
コード例 #5
0
def polyfit(xdata,
            ydata,
            a=None,
            b=None,
            varyexps=False,
            plotwin=None,
            positive=False):
    ''' quick lin fit func
        poly fit y = sum(a[i]*x**b[i])

        note : assumes that the exponents are not varied. If that's ever necessary,
            set varyexps to True.
            Also, it is recommended you always set a and b, don't rely on default vals
                as they may change.

        If plot win set, plot results in a window'''
    if (a is None):
        a = [0, 1, 1]
    if (b is None):
        b = [0, 1, 2]

    if (positive is True):
        minval = 0
    else:
        minval = None

    pars = Parameters()
    for i in range(len(a)):
        pars.add('a{}'.format(i), value=a[i], vary=True, min=minval)
        pars.add('b{}'.format(i), value=b[i], vary=varyexps)
    fitfn = FitObject(fn=polyfitfunc, pars=pars)
    fitfn.fit(xdata, ydata)
    yfit = polyfitfunc(xdata, fitfn.pars)
    pars = fitfn.pars
    if (plotwin is not None):
        plt.figure(plotwin)
        plt.plot(xdata, ydata, 'ko')
        #compute with finer spacing
        xfit = np.linspace(np.min(xdata), np.max(xdata))
        yfit2 = polyfitfunc(xfit, fitfn.pars)
        plt.plot(xfit, yfit2, 'r')
    return yfit, pars
コード例 #6
0
def linfit(xdata,ydata,a=None,b=None,plotwin=None): 
    ''' quick lin fit func
        linear fit y = a + b*x
    
        If plot win set, plot results in a window'''
    if a is None:
        a = 1
    if b is None:
        b = 1.

    pars = Parameters()
    pars.add('a' , value= a, vary= True)
    pars.add('b' , value = b, vary= True)
    fitfn = FitObject(fn=linfitfunc,pars=pars)
    fitfn.fit(xdata,ydata)
    yfit = linfitfunc(xdata,fitfn.pars)
    if(plotwin is not None):
        plt.figure(plotwin)
        plt.plot(xdata,ydata,'ko')
        #compute with finer spacing
        xfit = np.linspace(np.min(xdata),np.max(xdata));
        yfit2 = linfitfunc(xfit,fitfn.pars)
        plt.plot(xfit,yfit2,'r')
    return yfit, fitfn.pars
コード例 #7
0
ファイル: RingFit.py プロジェクト: keshav-rathor/1st-upload
class RingFitObject(FitObject):
    '''A class to fit a ring for detector calibration.'''
    def __init__(self,fn=None,pars=None,x0=None,y0=None,r0=None,sigma=None,IMG=None,mask=None):
        self.mask = mask
        self.IMG = mask

        self.pars = Parameters()
        self.pars.add('amp', 2,min=0,max=10)
        self.pars.add('bg', 1)
        self.pars.add('bgexp', 4.,min=1.,max=4.)
        self.pars.add('r0', 1500,min=1000,max=2000)#,vary=False)
        self.pars.add('sigma', 2,min=.1, max=100)#,vary=False)
        self.pars.add('x0',XCEN,min=XCEN-10,max=XCEN+10)
        self.pars.add('y0',YCEN,min=YCEN-10,max=YCEN+10)
        super(RingFit,self).__init__(fn=fn,pars=pars)

    #setting parameters (can type rngfitobj.set and hit tab to see them)
    def setr0(self,r0,min=None,max=None,vary=None):
        self.pars['r0'].value = r0
        if(min is not None):
            self.pars['r0'].min = min
        if(max is not None):
            self.pars['r0'].max = max
        if(vary is not None):
            self.pars['r0'].vary = vary

    def setamp(self,amp,min=None,max=None,vary=None):
        self.pars['amp'].value = amp
        if(min is not None):
            self.pars['amp'].min = min
        if(max is not None):
            self.pars['amp'].max = max
        if(vary is not None):
            self.pars['amp'].vary = vary

    def setx0(self,x0,min=None,max=None,vary=None):
        self.pars['x0'].value = x0
        if(min is not None):
            self.pars['x0'].min = min
        if(max is not None):
            self.pars['x0'].max = max
        if(vary is not None):
            self.pars['x0'].vary = vary

    def sety0(self,y0,min=None,max=None,vary=None):
        self.pars['y0'].value = y0
        if(min is not None):
            self.pars['y0'].min = min
        if(max is not None):
            self.pars['y0'].max = max
        if(vary is not None):
            self.pars['y0'].vary = vary

    def setsigma(self,sigma,min=None,max=None,vary=None):
        self.pars['sigma'].value = sigma
        if(min is not None):
            self.pars['sigma'].min = min
        if(max is not None):
            self.pars['sigma'].max = max
        if(vary is not None):
            self.pars['sigma'].vary = vary

    def setbg(self,bg,min=None,max=None,vary=None):
        self.pars['bg'].value = bg
        if(min is not None):
            self.pars['bg'].min = min
        if(max is not None):
            self.pars['bg'].max = max
        if(vary is not None):
            self.pars['bg'].vary = vary

    def setbgexp(self,bgexp,min=None,max=None,vary=None):
        self.pars['bgexp'].value = bgexp
        if(min is not None):
            self.pars['bgexp'].min = min
        if(max is not None):
            self.pars['bgexp'].max = max
        if(vary is not None):
            self.pars['bgexp'].vary = vary

    def setmask(self,mask):
        self.mask = mask
        self.pixellist = np.where(mask.ravel() == 1)

    def setIMG(self,IMG):
        self.IMG = IMG

    def fit(self,IMG=None,mask=None):
        ''' Fit the function. If not data is given use previous data.'''
        if(IMG is None):
            IMG = self.IMG
            if(self.IMG is None):
                print("Cannot fit, no data in fit object (please supply data)")
                return
        else:
            self.IMG = IMG

        if(mask is None):
            mask = self.mask
            if(self.mask is None):
                print("Cannot fit, no data in fit object (please supply data)")
                return
        else:
            self.mask = mask

        pixellist = self.pixellist
        x = np.arange(IMG.shape[1])
        y = np.arange(IMG.shape[0])
        X,Y = np.meshgrid(x,y)
        xy = np.array([X.ravel()[pixellist],Y.ravel()[pixellist]])
        
        erbs = np.ones(len(pixellist[0]))*1
        
        
        fitobj.fit(xy,data,erbs=erbs)
        
        
        super(RingFit,self).fit(xdata,ydata,erbs=wdata)

    def getfit(self):
        ''' Get the current fitted image.'''
        pars = self.pars
        data = np.zeros(self.IMG.shape)
        data.ravel()[pixellist] = self.fn(xy,pars)
        data.ravel()[pixellist] = self.fn(xy,fitobj.pars)
        return data

    def getfitparams(self):
        return self.pars
コード例 #8
0
ファイル: samplefit.py プロジェクト: keshav-rathor/1st-upload
#sample fit to the fit object
#include a fit function
from fit.fitfns import spheresqfunc, sspheresqfunc, savitzky_golay, spherepolygauss
import numpy as np
from fit.FitObject import FitObject, Parameters
import matplotlib.pyplot as plt

plt.figure(0)
#initialize the parameters
pars = Parameters()
pars.add('amp', value=1, vary=False)
pars.add('radius', value=100, vary=True)
pars.add('window', value=21, vary=True)
ndata = 400
xdata = np.linspace(1e-4, .1, ndata)
ydata = spheresqfunc(xdata, pars) + np.random.random(ndata) * .01
erbs = xdata * 0 + .01
fitfn = FitObject(fn=sspheresqfunc, pars=pars)
fitfn.fit(xdata, ydata, erbs)
fitfn.plot(xdata, ydata, logxy=[1, 1])
fitfn.printpars()

plt.figure(1)
#Try a different distribution
pars = Parameters()
pars.add('amp', value=1, vary=True)
pars.add('radius', value=100, vary=True)
pars.add('FWHM', value=10, vary=True)
pars.add('parasitic', value=1e-3, vary=True)
pars.add('bg', value=0, vary=False)
ndata = 400
コード例 #9
0
class Gauss2DFitter(FitObject):
    '''A class to fit a Gaussian peak.
    '''
    def __init__(self, fn=None, pars=None, IMG=None, mask=None):
        self.mask = mask
        self.IMG = mask
        if (pars is None):
            pars = {
                'amp': 1,
                'x0': 0.,
                'y0': 0,
                'sigmax': 1.,
                'sigmay': 1.,
                'const': 0
            }

        if (hasattr(pars['amp'], "value")):
            self.pars = pars
        else:
            self.pars = Parameters()
            for key in pars:
                self.pars.add(key, pars[key])

        super(Gauss2DFitter, self).__init__(fn=gauss2Dfitfunc, pars=pars)

    def fit(self, IMG=None, mask=None):
        ''' Fit the function. If not data is given use previous data.'''
        if (IMG is None):
            IMG = self.IMG
            if (self.IMG is None):
                print("Cannot fit, no data in fit object (please supply data)")
                return
        else:
            self.IMG = IMG

        if (mask is None):
            mask = self.mask
            if (self.mask is None):
                print("Cannot fit, no data in fit object (please supply data)")
                return
        else:
            self.mask = mask

        pixellist = self.pixellist
        x = np.arange(IMG.shape[1])
        y = np.arange(IMG.shape[0])
        X, Y = np.meshgrid(x, y)
        xy = np.array([X.ravel()[pixellist], Y.ravel()[pixellist]])

        erbs = np.ones(len(pixellist[0])) * 1

        fitobj.fit(xy, data, erbs=erbs)

        super(Gauss2DFitter, self).fit(xdata, ydata, erbs=wdata)

    def setmask(self, mask):
        self.mask = mask
        self.pixellist = np.where(mask.ravel() == 1)

    def setIMG(self, IMG):
        self.IMG = IMG

    def fit(self, IMG=None, mask=None):
        ''' Fit the function. If not data is given use previous data.'''
        if (IMG is None):
            IMG = self.IMG
            if (self.IMG is None):
                print("Cannot fit, no data in fit object (please supply data)")
                return
        else:
            self.IMG = IMG

        if (mask is None):
            mask = self.mask
            if (self.mask is None):
                print("Cannot fit, no data in fit object (please supply data)")
                return
        else:
            self.mask = mask

        pixellist = self.pixellist
        x = np.arange(IMG.shape[1])
        y = np.arange(IMG.shape[0])
        X, Y = np.meshgrid(x, y)
        xy = np.array([X.ravel()[pixellist], Y.ravel()[pixellist]])

        erbs = np.ones(len(pixellist[0])) * 1

        fitobj.fit(xy, data, erbs=erbs)

        super(RingFit, self).fit(xdata, ydata, erbs=wdata)

    def getfit(self):
        ''' Get the current fitted image.'''
        pars = self.pars
        data = np.zeros(self.IMG.shape)
        data.ravel()[pixellist] = self.fn(xy, pars)
        data.ravel()[pixellist] = self.fn(xy, fitobj.pars)
        return data

    def getfitparams(self):
        return self.pars
コード例 #10
0
def fitAgBHring(IMG, mask=None, pars=None, plotwin=None, clims=None):
    ''' Fit an AgBH (silver behenate) ring
        plotwin : if set, plot to the window desired.
        pars : a Parameters object of the initial guess Parameters. If not set
            the program will ask you for a best guess.
        mask : a mask
        clims : if specified, these will be the color limits of the image plot windows
            default is to take min and max of *masked* image
    '''
    qAGBH = 2 * np.pi / CONST_AgBHpeak
    if (plotwin is not None):
        plt.figure(plotwin)
        if (mask is None):
            mask = np.ones(IMG.shape)
        img = IMG * (mask + .1)
        plt.imshow(img)
        if (clims is None):
            plt.clim(np.min(img * mask), np.max(img * mask))
        plt.draw()
        plt.pause(.001)

    pixellist = np.where(mask.ravel() == 1)
    print(
        "\n\nfitAgBH: An attempt to fit the first silver behenate ring on a 2D area det"
    )
    print("Note if plotting, the masked region is brightened w.r.t. the rest")
    print("Some tips: \n \
           1. Try to set mask to only select region near where the ring is\n\
                for a better fit\n\
            2. Try a fit without the parasitic bg or const scattering first.\n\
        ")

    if (pars is None):
        pars = Parameters()
        print(
            "You did not specify parameters, so I will ask you a few questions"
        )
        print("Specify the variables in one of two ways, either:")
        print(": value, min, max")
        print("or")
        print(": value")
        #it is "raw_input" in python 2x

        xcenvals = np.array(
            input("beam center x position guess: ").split(",")).astype(float)
        pars.add('x0', xcenvals[0], min=xcenvals[0] - 40, max=xcenvals[0] + 40)
        if (len(xcenvals) == 3):
            pars['x0'].min = xcenvals[1]
            pars['x0'].max = xcenvals[2]

        ycenvals = np.array(
            input("beam center y position guess: ").split(",")).astype(float)
        pars.add('y0', ycenvals[0], min=ycenvals[0] - 40, max=ycenvals[0] + 40)
        if (len(ycenvals) == 3):
            pars['y0'].min = ycenvals[1]
            pars['y0'].max = ycenvals[2]

        if (plotwin is not None):
            print("Plotted estimate of S(q) from given xcen, ycen")
            sqx, sqy = circavg(IMG, x0=xcenvals[0], y0=ycenvals[0], mask=mask)
            plt.figure(plotwin + 2)
            plt.cla()
            w = np.where(sqy > 0)
            plt.loglog(sqx[w], sqy[w])

        ampvals = np.array(
            input("amplitude of ring: ").split(",")).astype(float)
        pars.add('amp', ampvals[0], min=0, max=1e9)
        if (len(ampvals) == 3):
            pars['amp'].min = ampvals[1]
            pars['amp'].max = ampvals[1]

        ringvals = np.array(
            input("Ring location (in pixels from center of beam, approx):").
            split(",")).astype(float)
        pars.add('r0', ringvals[0], min=0, max=4 * ringvals[0])
        if (len(ringvals) == 3):
            pars['r0'].min = ringvals[1]
            pars['r0'].max = ringvals[2]

        sigmavals = np.array(
            input("sigma of ring (FWHM for Lorentzian) :").split(",")).astype(
                float)
        pars.add('sigma', sigmavals[0], min=.1, max=100)  #,vary=False)
        if (len(sigmavals) == 3):
            pars['sigma'].min = sigmavals[1]
            pars['sigma'].max = sigmavals[2]

        bgvals = input("1/q^4 background (enter nothing to not vary): ")
        if (len(bgvals) == 0):
            pars.add('bg', 0, vary=False)
            pars.add('bgexp', 4., vary=False)
        else:
            bgvals = np.array(bgvals.split(",")).astype(float)
            pars.add('bg', bgvals[0], vary=False)
            pars.add('bgexp', 4., vary=True, min=1, max=4)
            if (len(bgvals) == 3):
                pars['bg'].min = bgvals[1]
                pars['bgexp'].max = bgvals[2]
        constvals = input("Constant background (enter nothing to not vary):")
        if (len(constvals) == 0):
            pars.add('const', 0, vary=False)
        else:
            constvals = np.array(constvals.split(",")).astype(float)
            pars.add("const", constvals[0])
            if (len(constvals) == 3):
                pars['const'].min = constvals[1]
                pars['const'].max = constvals[2]

    data = IMG.ravel()[pixellist]

    fitobj = FitObject(fn=ring2Dlorentzfitfunc, pars=pars)

    x = np.arange(IMG.shape[1])
    y = np.arange(IMG.shape[0])
    X, Y = np.meshgrid(x, y)
    xy = np.array([X.ravel()[pixellist], Y.ravel()[pixellist]])

    erbs = np.ones(len(pixellist[0]))

    datatest = np.zeros(IMG.shape)

    fitobj.fit(xy, data, erbs=erbs)

    datatest.ravel()[pixellist] = fitobj.fn(xy, fitobj.pars)

    XCENFIT = fitobj.pars['x0'].value
    YCENFIT = fitobj.pars['y0'].value
    RFIT = fitobj.pars['r0'].value
    SIGMAFIT = fitobj.pars['sigma'].value
    CONSTFIT = fitobj.pars['const'].value
    BGFIT = fitobj.pars['bg'].value
    BGEXPFIT = fitobj.pars['bgexp'].value
    print("x center fit: {:3.2f}; y center fit: {:3.2f}; radius fit: {:3.2f}".
          format(XCENFIT, YCENFIT, RFIT))
    print(
        "ring FWHM : {:3.2f}; const background: {:3.2f}; parasitic bg: {:3.2f}/q^{:3.2f}"
        .format(SIGMAFIT, CONSTFIT, BGFIT, BGEXPFIT))
    sqd_x, sqd_y = circavg(IMG, x0=XCENFIT, y0=YCENFIT, mask=mask)
    sqf_x, sqf_y = circavg(datatest, x0=XCENFIT, y0=YCENFIT, mask=mask)
    if (plotwin is not None):
        plt.figure(plotwin)
        plt.cla()
        plt.imshow(IMG * mask)
        if (clims is None):
            plt.clim(np.min(img * mask), np.max(img * mask))
        plcirc([XCENFIT, YCENFIT], RFIT, 'b')
        #plt.clim(np.min(IMG*mask),np.max(IMG*mask))

        plt.figure(plotwin + 1)
        plt.cla()
        plt.imshow(datatest * mask)
        if (clims is None):
            plt.clim(np.min(img * mask), np.max(img * mask))
        #plt.clim(np.min(IMG*mask),np.max(IMG*mask))
        plcirc([XCENFIT, YCENFIT], RFIT, 'b')

        plt.figure(plotwin + 2)
        plt.cla()
        plt.loglog(sqd_x, sqd_y)
        plt.loglog(sqf_x, sqf_y, 'r')
        plt.gca().autoscale_view('tight')
        plt.draw()
        plt.pause(0.001)
    resp = input("Get det distance?(y for yes, anything else for no): ")
    if (resp == 'y'):
        wv = float(input("wavelength (in angs): "))
        dpix = float(input("pix size (in m): "))
        L, err = getdistfrompeak(qAGBH, wv, dpix, RFIT)
        print(
            "Your length is approximately {:4.2f} m, and error in calc (from Ewald curvature) approx {:4.2f}%"
            .format(L, err))

    print("done")
コード例 #11
0
    def __init__(self, pars=None, xdata=None, ydata=None):
        #default is to plot in logxy 1,1
        self.logxy = [1, 1]
        self.xdata = xdata
        self.ydata = ydata
        self.wdata = None
        if (pars is None):
            pars = Parameters()
            pars.add("amp", value=1., vary=True)
            pars.add("rbar", value=500., vary=True)
            pars.add("z", value=100., vary=True)
            pars.add("parasitic", value=0., vary=False)
            pars.add("bg", value=0., vary=False)
        else:
            #If it's not in the Parameters object format, convert it
            if (not hasattr(pars["amp"], "value")):
                pars1 = pars
                pars = Parameters()
                for key in pars1:
                    pars.add(key, value=pars1[key])

        super(SchultzFitObject, self).__init__(fn=sqsphereschultz, pars=pars)