コード例 #1
0
ファイル: make_tables.py プロジェクト: lxh3/aa-stocks
def ninth_sector_comps():
    
    """ Create list of companies composing the 9th sector """

    # Load dataframe, 8 sector and 9 sector fits
    X = pd.read_pickle('data/data.pkl')
    XC8,S8,C8,SSE8,varexpl8 = local_load('saves/8_factor_matrices.pkl.gz')
    XC9,S9,C9,SSE9,varexpl9 = local_load('saves/9_factor_matrices.pkl.gz')

    # Divide companies by strongest sector affiliation for the 8 factor model
    divided_comps_8 = []
    for i in xrange(8):
        index = np.where(np.argmax(S8,axis=0)==i)
        comps = X.columns.values[index]
        divided_comps_8.append(comps)
    
    # Divide companies by strongest sector affiliation for the 9 factor model
    divided_comps_9 = []
    for i in xrange(9):
        index = np.where(np.argmax(S9,axis=0)==i)
        comps = X.columns.values[index]
        divided_comps_9.append(comps)

    # Determine overlap between 8 and 9 sector decompositions
    count = np.zeros((9,8))
    for i in xrange(9):
        for j in xrange(8):
            C = Counter(divided_comps_8[j]) & Counter(divided_comps_9[i])
            count[i,j]=(len(list(C.elements())))

    # Visually identified 9th sector and it's constituent companies from count
    ninth_sector_companies = divided_comps_9[4]
   
    return ninth_sector_companies
コード例 #2
0
ファイル: make_tables.py プロジェクト: lxh3/aa-stocks
def top_three_sector_comps():

    """ 
    Creates list of top 20 companies composing each of the sectors in the
    three sector decomposition with the percentage they contribute to the sector
    """

    X = pd.read_pickle('data/data.pkl')
    
    # Add the sector and ticker information
    sects = ['basic', 'capital', 'cyclical', 'energy', 'fin', 'health', 'noncyc',
             'tech', 'telecom', 'utils', 'miscservices', 'realestate', 'retail', 'transport']
    numcos = [58, 61, 41, 42, 107, 53, 40, 93, 6, 57, 55, 31, 46, 15]
    sulis_sects = [[v]*k for k, v in zip(numcos, sects)]
    sectsarray= np.array([item for sublist in sulis_sects for item in sublist])
    tickers = X.columns.values.tolist()
    sectors = sectsarray.tolist()
    tuples = list(zip(*[tickers,sectors]))
    index = pd.MultiIndex.from_tuples(tuples, names=['tickers', 'sectors'])
    Xst = pd.read_pickle('data/data.pkl')
    Xst.columns=index

    # Load three factor matrices
    XC3,S3,C3,SSE3,varexpl3 = local_load('saves/3_factor_matrices.pkl.gz')

    # Determine top 20 companies in each of the three sectors
    # and the percentage of the sector attributable to them
    Corner1 = Xst.columns[C3[:,0].argsort()[-20:][::-1]]
    Percent1 = np.round(C3[C3[:,0].argsort()[-20:][::-1]][:,0]*100,2)
    Corner2 = Xst.columns[C3[:,1].argsort()[-20:][::-1]]
    Percent2 = np.round(C3[C3[:,1].argsort()[-20:][::-1]][:,1]*100,2)
    Corner3 = Xst.columns[C3[:,2].argsort()[-20:][::-1]]
    Percent3 = np.round(C3[C3[:,2].argsort()[-20:][::-1]][:,2]*100,2)

    return Corner1, Percent1, Corner2, Percent2, Corner3, Percent3
コード例 #3
0
def company_pies():
    """ Plot companies as pies colored by their exposure to each of the eight sectors"""

    # Define colors, define labels and load data
    cs = np.asarray([
        '#984EA3', '#E41A1C', '#A65628', '#F781BF', '#4DAF4A', '#377EB8',
        '#FF7F00', '#FFF000'
    ])
    companies = np.asarray([
        'Berry Petroleum', 'Corning', 'IBM', 'PG&E', 'Plum Creek Timber',
        'Wal-Mart'
    ]).reshape((2, 3))
    company_tickers = np.asarray(['BRY', 'GLW', 'IBM', 'PCG', 'PCL',
                                  'WMT']).reshape((2, 3))
    E, W, C, SSE, varexpl = local_load('saves/8_factor_matrices.pkl.gz')
    X = pd.read_pickle('data/data.pkl')

    # Plot
    plt.figure(figsize=(9, 6))
    plt.rcParams['patch.linewidth'] = 0
    the_grid = gridspec.GridSpec(2, 3)

    for i in xrange(2):
        for j in xrange(3):
            plt.subplot(the_grid[i, j], aspect=1)
            index = np.argwhere(X.columns.values == company_tickers[i,
                                                                    j])[0][0]
            plt.pie(W.T[index], colors=cs, shadow=True, explode=[0.1] * 8)
            plt.title(companies[i, j], fontsize=16)

    plt.savefig('figures/company_pies.png', bbox_inches='tight', pad_inches=0)
    plt.close()

    return
コード例 #4
0
def unweighted_price_index():
    """ Create figure showing the unweighted price index of each sector """

    E, W, C, SSE, varexpl = local_load('saves/8_factor_matrices.pkl.gz')

    X_raw = np.load('data/raw_data.npy')
    indxs = np.dot(X_raw, C)
    indxs = indxs / indxs[0, :]

    cs = np.asarray([
        '#984EA3', '#E41A1C', '#A65628', '#F781BF', '#4DAF4A', '#377EB8',
        '#FF7F00', '#FFF000'
    ])

    order = [3, 1, 7, 0, 4, 2, 5, 6]

    indxs = indxs[:, order]
    cs = cs[order]

    fig, axs = plt.subplots(1, 8, figsize=(12, 2.5))

    for i in xrange(8):

        plt.rcParams['ytick.color'] = '#636363'
        plt.rcParams['xtick.color'] = '#636363'
        plt.rcParams['axes.linewidth'] = 0
        output = StringIO()
        plt.ioff()
        frameon = False

        ax = plt.subplot(1, 8, i + 1)
        plt.plot(indxs[:, i], color=cs[i])

        ax.tick_params(axis='y', direction='out')
        ax.yaxis.tick_left()
        ax.tick_params(axis='x', direction='out')
        ax.xaxis.tick_bottom()

        plt.ylim(0, 10)
        plt.xlim(0, 5001)
        if i != 0:
            plt.yticks([0, 5, 10], [])
        else:
            plt.yticks([0, 5, 10], [0, 5, 10])

        if i < 0:
            plt.xticks([343, 1853, 3359, 4869], [])
        else:
            plt.xticks([343, 1853, 3359, 4869], ['95', '01', '07', '13'])

    plt.subplots_adjust(hspace=0.15, wspace=0.35)
    plt.savefig('figures/unweighted_price_index.png',
                bbox_inches='tight',
                pad_inches=0)
    plt.close()

    return
コード例 #5
0
def cumulative_log_returns():
    """ Create figure showing the cumulative log returns of each sector """

    E, W, C, SSE, varexpl = local_load('saves/8_factor_matrices.pkl.gz')
    e = np.exp(E)
    x = np.zeros([5001, 8])
    x[1:, :] = E
    x[0, :] = [1.] * 8
    p = np.cumsum(x, axis=0)

    indxs = (p / (250.0**.5))
    order = [3, 1, 7, 0, 4, 2, 5, 6]

    indxs = indxs[:, order]
    cs = np.asarray([
        '#984EA3', '#E41A1C', '#A65628', '#F781BF', '#4DAF4A', '#377EB8',
        '#FF7F00', '#FFF000'
    ])
    cs = cs[order]

    fig, axs = plt.subplots(2, 4, figsize=(9.6, 6))

    for i in xrange(8):

        plt.rcParams['ytick.color'] = '#636363'
        plt.rcParams['xtick.color'] = '#636363'
        plt.rcParams['axes.linewidth'] = 0
        output = StringIO()
        plt.ioff()
        frameon = False

        ax = plt.subplot(2, 4, i + 1)
        plt.plot(indxs[:, i], color=cs[i])

        ax.tick_params(axis='y', direction='out')
        ax.yaxis.tick_left()
        ax.tick_params(axis='x', direction='out')
        ax.xaxis.tick_bottom()

        plt.xlim(0, 5001)
        if i != 0 and i != 4:
            plt.yticks([-2, 0, 2, 4], [])
        else:
            plt.yticks([-2, 0, 2, 4], [-2, 0, 2, 4])

        if i < 4:
            plt.xticks([343, 1853, 3359, 4869], [])
        else:
            plt.xticks([343, 1853, 3359, 4869], ['95', '01', '07', '13'])

    plt.subplots_adjust(hspace=0.15, wspace=0.35)
    plt.savefig('figures/cumulative_log_returns.png',
                bbox_inches='tight',
                pad_inches=0)
    plt.close()

    return
コード例 #6
0
def tetrahedron_array_st():
    """ 
    Make figure of tetrahedra along 
    different combinations of singular vectors 
    colored by scottrade classification 
    """

    # Load Fits
    filename = 'saves/8_factor_matrices.pkl.gz'
    E, W, C, SSE, varexpl = local_load(filename)

    # Calculate Singular Vectors
    A = np.dot(E, W)
    u, s, vt = svd(A.T, full_matrices=0)
    vtE = np.asarray(np.dot(vt, E))

    # Define colors and labels
    cols = [
        '#FFF000', '#FDBF6F', '#A6CEE3', '#33A02C', '#FB9A99', '#B2DF8A',
        '#E31A1C', '#6A3D9A', '#FF7F00', '#543005', '#CAB2D6', '#000000',
        '#1F78B4', '#8C510A'
    ]
    numcos = [58, 61, 41, 42, 107, 53, 40, 93, 6, 57, 55, 31, 46, 15]

    sulis = [[v] * k for k, v in zip(numcos, cols)]
    csuarray = np.array([item for sublist in sulis for item in sublist])

    # Plot figure
    fig, axs = plt.subplots(8, 8, figsize=(20, 20))

    for ((j, i), ax) in np.ndenumerate(axs):
        if i < j:
            xs, ys = u[:, i].T * s[i], u[:, j].T * s[j]
            ax.scatter(xs, ys, s=5, color=csuarray)
            ax.scatter(vtE[i, :], vtE[j, :], s=10, color='k')
            ax.set_axis_off()

            xy = zip(vtE[i, :], vtE[j, :])
            for p in itertools.combinations(xy, 2):
                ax.plot([p[0][0], p[1][0]], [p[0][1], p[1][1]],
                        ls='--',
                        color='#D9D9D9')

        else:
            plt.delaxes(ax)

    plt.subplots_adjust(hspace=0.05, wspace=0.05)
    plt.savefig('figures/tetrahedron_array_st.png',
                bbox_inches='tight',
                pad_inches=0)
    plt.close()

    return
コード例 #7
0
def single_tetrahedron():
    """ 
    Make figure of single tetrahedron along 1st two singular vectors 
    colored by sector association 
    """

    # Load Fits
    filename = 'saves/8_factor_matrices.pkl.gz'
    E, W, C, SSE, varexpl = local_load(filename)

    # Calculate Singular Vectors
    A = np.dot(E, W)
    u, s, vt = svd(A.T, full_matrices=0)
    vtE = np.asarray(np.dot(vt, E))

    # Define colors and assign to data points
    csu = np.array([
        '#984EA3', '#E41A1C', '#A65628', '#F781BF', '#4DAF4A', '#377EB8',
        '#FF7F00', '#FFF000'
    ])
    csuarray = csu[np.argmax(W, 0)]

    # Initialize Plot
    i = 0
    j = 1
    matplotlib.rcParams['ytick.color'] = '#636363'
    matplotlib.rcParams['xtick.color'] = '#636363'
    matplotlib.rcParams['axes.linewidth'] = 0
    output = StringIO()
    plt.ioff()

    frameon = False

    # Plot stock data and corner points
    xs, ys = u[:, i].T * s[i], u[:, j].T * s[j]
    plt.scatter(xs, ys, s=5, color=csuarray)
    plt.scatter(vtE[i, :], vtE[j, :], s=10, color='k')

    # Plot tetrathedron edges
    xy = zip(vtE[i, :], vtE[j, :])
    for p in itertools.combinations(xy, 2):
        plt.plot([p[0][0], p[1][0]], [p[0][1], p[1][1]],
                 ls='-',
                 color='#D9D9D9')

    # Save figure
    plt.savefig('figures/single_tetrahedron.png',
                bbox_inches='tight',
                pad_inches=0)
    plt.close()

    return
コード例 #8
0
def tetrahedron_array():
    """ 
    Make figure of tetrahedra along 
    different combinations of singular vectors 
    colored by sector association 
    """

    # Load Fits
    filename = 'saves/8_factor_matrices.pkl.gz'
    E, W, C, SSE, varexpl = local_load(filename)

    # Calculate Singular Vectors
    A = np.dot(E, W)
    u, s, vt = svd(A.T, full_matrices=0)
    vtE = np.asarray(np.dot(vt, E))

    # Define colors and assign to data points
    csu = np.array([
        '#984EA3', '#E41A1C', '#A65628', '#F781BF', '#4DAF4A', '#377EB8',
        '#FF7F00', '#FFF000'
    ])
    csuarray = csu[np.argmax(W, 0)]

    # Plot
    fig, axs = plt.subplots(8, 8, figsize=(20, 20))

    for ((j, i), ax) in np.ndenumerate(axs):
        if i < j:
            xs, ys = u[:, i].T * s[i], u[:, j].T * s[j]
            ax.scatter(xs, ys, s=5, color=csuarray)
            ax.scatter(vtE[i, :], vtE[j, :], s=10, color='k')
            ax.set_axis_off()

            xy = zip(vtE[i, :], vtE[j, :])
            for p in itertools.combinations(xy, 2):
                ax.plot([p[0][0], p[1][0]], [p[0][1], p[1][1]],
                        ls='--',
                        color='#D9D9D9')

        else:
            plt.delaxes(ax)

    plt.subplots_adjust(hspace=0.05, wspace=0.05)
    plt.savefig('figures/tetrahedron_array.png',
                bbox_inches='tight',
                pad_inches=0)
    plt.close()

    return
コード例 #9
0
def W():
    """ 
    Weight distribution in canonical sectors. Each of the eight subplots shows the
    constituent participation weights of all 705 companies in a canonical sector (rows of W_fs). 
    Stocks are colored by their scottrade classification.
    """

    E, W, C, SSE, varexpl = local_load('saves/8_factor_matrices.pkl.gz')

    cols = [
        '#984ea3', '#6a51a3', '#df65b0', '#e41a1c', '#fff000', '#b3de69',
        '#4daf4a', '#377eb8', '#006d2c', '#ff7f00', '#ae017e', '#a65628',
        '#f781bf', '#3f007d'
    ]
    sects = [
        'basic', 'capital', 'cyclical', 'energy', 'fin', 'health', 'noncyc',
        'tech', 'telecom', 'utils', 'miscservices', 'realestate', 'retail',
        'transport'
    ]
    numcos = [58, 61, 41, 42, 107, 53, 40, 93, 6, 57, 55, 31, 46, 15]

    plt.rcParams['ytick.color'] = '#636363'
    plt.rcParams['xtick.color'] = '#636363'
    plt.rcParams['axes.linewidth'] = 0

    order = [3, 1, 7, 0, 4, 2, 5, 6]

    fig = plt.figure(figsize=(12, 12))
    fig.frameon = False

    for i in xrange(0, np.shape(W)[0], 1):
        plt.subplot(5, 2, i + 1)
        plt.xlim(0, 705)
        plt.yticks([])
        plt.ylim(0, 1)
        if i > 5:
            plt.xticks(xrange(0, 705, 100), [])
        else:
            plt.xticks(xrange(0, 705, 100), [])
        plot_eve(W.T, order[i], numcos, sects, cols)

    plt.subplots_adjust(hspace=0.2, wspace=0.1)
    plt.savefig('figures/W.png', bbox_inches='tight', pad_inches=0)
    plt.close()

    return
コード例 #10
0
def C():
    """
    Creates Figure B1 in associated paper. See paper for description.
    """

    E, W, C, SSE, varexpl = local_load('saves/8_factor_matrices.pkl.gz')

    cols = [
        '#984ea3', '#6a51a3', '#df65b0', '#e41a1c', '#fff000', '#b3de69',
        '#4daf4a', '#377eb8', '#006d2c', '#ff7f00', '#ae017e', '#a65628',
        '#f781bf', '#3f007d'
    ]
    sects = [
        'basic', 'capital', 'cyclical', 'energy', 'fin', 'health', 'noncyc',
        'tech', 'telecom', 'utils', 'miscservices', 'realestate', 'retail',
        'transport'
    ]
    numcos = [58, 61, 41, 42, 107, 53, 40, 93, 6, 57, 55, 31, 46, 15]

    plt.rcParams['ytick.color'] = '#636363'
    plt.rcParams['xtick.color'] = '#636363'
    plt.rcParams['axes.linewidth'] = 0

    order = [3, 1, 7, 0, 4, 2, 5, 6]

    fig = plt.figure(figsize=(12, 12))
    fig.frameon = False

    for i in xrange(0, np.shape(W)[0], 1):
        plt.subplot(5, 2, i + 1)
        plt.xlim(0, 705)
        if i > 5:
            plt.xticks(xrange(0, 701, 100),
                       ['0', '100', '200', '300', '400', '500', '600', '700'])
        else:
            plt.xticks(xrange(0, 701, 100), [])
        plot_eve(C, order[i], numcos, sects, cols)

    plt.subplots_adjust(hspace=0.2, wspace=0.1)
    plt.savefig('figures/C.png', bbox_inches='tight', pad_inches=0)
    plt.close()

    return
コード例 #11
0
def noisy_flows():
    """ Plots 'evolution' of noise applied to a static company decomposition """

    flows = local_load("saves/noisy_flows.pkl.gz")
    dataframe = pd.read_pickle('data/data.pkl')
    companies = [
        'Berry Petroleum', 'Corning', 'IBM', 'PG&E', 'Plum Creek Timber',
        'Wal-Mart'
    ]
    company_tickers = ['BRY', 'GLW', 'IBM', 'PCG', 'PCL', 'WMT']
    for i in xrange(len(companies)):
        ticks = dataframe.columns
        tick = company_tickers[i]
        plot_flows(flows, ticks, tick, plot_ts=0)
        plt.savefig('figures/' + companies[i] + '_noisy_flow.png',
                    bbox_inches='tight',
                    pad_inches=0)
        plt.close()

    return
コード例 #12
0
def flows():
    """ Plots evolution of company sector associated in time """

    flows = local_load("saves/flows.pkl.gz")
    dataframe = pd.read_pickle('data/data.pkl')
    companies = [
        'Berry Petroleum', 'Corning', 'IBM', 'PG&E', 'Plum Creek Timber',
        'Wal-Mart'
    ]
    company_tickers = ['BRY', 'GLW', 'IBM', 'PCG', 'PCL', 'WMT']
    for i in xrange(len(companies)):
        ticks = dataframe.columns
        tick = company_tickers[i]
        plot_flows(flows, ticks, tick, plot_ts=0)
        plt.savefig('figures/' + companies[i] + '_flow.png',
                    bbox_inches='tight',
                    pad_inches=0)
        plt.close()

    return
コード例 #13
0
def fama_french():
    """ 
    Produces projection plots for our three dimensional decomposition
    and that of Fama and French colored by market cap values
    """

    dataframe = pd.read_pickle('data/data.pkl')  # log returns
    data, MM = center_normalize_removemm(dataframe)

    S3 = local_load('saves/3_factor_matrices_mm_removed.pkl.gz')[1]

    #Load the fama and french data into pandas with the right parsers
    ff_df = pd.io.parsers.read_table('data/FF_Factors.txt',
                                     skiprows=4,
                                     delimiter='\s+',
                                     parse_dates=True)
    ff_df = ff_df / 100

    #restrict fama and french to the dates of interest
    mytimes = dataframe.index
    small_ff_df = ff_df.loc[mytimes]

    #Loads the data for each of the stocks above in a list
    with gzip.open('data/market_cap_list.pkl.gz', 'rb') as f:
        market_cap_list = pickle.load(f)

    ##clean up the data
    stock_names = []
    market_caps = []
    mc_stocks = []
    for i, cap in enumerate(market_cap_list):
        if cap != 'N/A':
            if "B" in cap:
                market_caps.append(float(cap.replace("B", "")) * 10**9)
            if "M" in cap:
                market_caps.append(float(cap.replace("M", "")) * 10**6)
            stock_names.append(dataframe.columns[i])
            mc_stocks.append(S3.T[i])
    stock_names = np.asarray(stock_names)
    market_caps = np.asarray(market_caps)
    mc_stocks = np.asarray(mc_stocks)

    ##divide into large cap and small cap
    big_mc_stocks = []
    big_stock_names = []
    med_mc_stocks = []
    med_stock_names = []
    sm_mc_stocks = []
    sm_stock_names = []
    bigmed_cutoff = 10 * 10**9
    smmed_cutoff = 2 * 10**9
    for i in xrange(len(market_caps)):
        if market_caps[i] >= bigmed_cutoff:
            big_mc_stocks.append(mc_stocks[i])
            big_stock_names.append(stock_names[i])
        elif market_caps[i] <= smmed_cutoff:
            sm_mc_stocks.append(mc_stocks[i])
            sm_stock_names.append(stock_names[i])
        else:
            med_mc_stocks.append(mc_stocks[i])
            med_stock_names.append(stock_names[i])
    big_mc_stocks = np.asarray(big_mc_stocks)
    med_mc_stocks = np.asarray(med_mc_stocks)
    sm_mc_stocks = np.asarray(sm_mc_stocks)

    size = 3
    fig, axs = plt.subplots(size,
                            size,
                            figsize=(20, 20),
                            subplot_kw={"frameon": False},
                            sharex=True,
                            sharey=True)
    for i in range(size):
        for j in range(size):
            if j > i:
                k = list(
                    set([0, 1,
                         2]).difference(set([i])).difference(set([j])))[0]
                c = np.r_[["#e41a1c"] * len(big_mc_stocks[:, i]),
                          ["#377eb8"] * len(med_mc_stocks[:, i]),
                          ["#4daf4a"] * len(sm_mc_stocks[:, i])]
                xs = np.r_[big_mc_stocks[:, i], med_mc_stocks[:, i],
                           sm_mc_stocks[:, i]]
                ys = np.r_[big_mc_stocks[:, j], med_mc_stocks[:, j],
                           sm_mc_stocks[:, j]]
                zs = np.r_[big_mc_stocks[:, k], med_mc_stocks[:, k],
                           sm_mc_stocks[:, k]]
                pks = zs.argsort()

                axs[i, j].scatter(xs[pks],
                                  ys[pks],
                                  c=c[pks],
                                  linewidth=0,
                                  alpha=0.8)
                axs[i, j].axis("equal")
            else:
                axs[i, j].axis('off')
    plt.savefig('figures/fama_french1.png', bbox_inches='tight', pad_inches=0)

    big_stocks = []
    for name in big_stock_names:
        big_stocks.append(dataframe[name])
    med_stocks = []
    for name in med_stock_names:
        med_stocks.append(dataframe[name])
    sm_stocks = []
    for name in sm_stock_names:
        sm_stocks.append(dataframe[name])
    big_stocks = pd.DataFrame(big_stocks)
    med_stocks = pd.DataFrame(med_stocks)
    sm_stocks = pd.DataFrame(sm_stocks)

    out = dolinearregression(big_stocks.T,
                             small_ff_df[['FFMkt-RF', 'FFSMB', 'FFHML']],
                             small_ff_df,
                             MM,
                             sub=True)
    big_w = out[0]
    out = dolinearregression(med_stocks.T,
                             small_ff_df[['FFMkt-RF', 'FFSMB', 'FFHML']],
                             small_ff_df,
                             MM,
                             sub=True)
    med_w = out[0]
    out = dolinearregression(sm_stocks.T,
                             small_ff_df[['FFMkt-RF', 'FFSMB', 'FFHML']],
                             small_ff_df,
                             MM,
                             sub=True)
    sm_w = out[0]

    size = 3
    fig, axs = plt.subplots(size,
                            size,
                            figsize=(20, 20),
                            subplot_kw={"frameon": False},
                            sharex=True,
                            sharey=True)
    for i in range(size):
        for j in range(size):
            if j > i:
                #k = # other index
                #sortpk = big_w[k,:].argsort()

                k = list(
                    set([0, 1,
                         2]).difference(set([i])).difference(set([j])))[0]
                c = np.r_[["#e41a1c"] * len(big_w[i, :]),
                          ["#377eb8"] * len(med_w[i, :]),
                          ["#4daf4a"] * len(sm_w[i, :])]
                xs = np.r_[big_w[i, :], med_w[i, :], sm_w[i, :]]
                ys = np.r_[big_w[j, :], med_w[j, :], sm_w[j, :]]
                zs = np.r_[big_w[k, :], med_w[k, :], sm_w[k, :]]
                pks = zs.argsort()

                axs[i, j].scatter(xs[pks],
                                  ys[pks],
                                  c=c[pks],
                                  linewidth=0,
                                  alpha=0.8)

                axs[i, j].axis("equal")
            else:
                axs[i, j].axis('off')

    plt.savefig('figures/fama_french2.png', bbox_inches='tight', pad_inches=0)
    plt.close()

    return
コード例 #14
0
def sector_pies():
    """ 
    Plot sectors as pies colored by their
    relation to a sector decomposition with 
    a different number of archetypes
    """

    # Load in fit data
    E_list = []
    weights = []
    for i in xrange(2, 10):
        E, W, C, SSE, varexpl = local_load('saves/' + str(i) +
                                           '_factor_matrices.pkl.gz')
        E_list.append(E)
        if i < 9:
            weights.append(W)
        if i == 8:
            C8 = C

    E2 = E_list[0]
    E3 = E_list[1]
    E8 = E_list[-2]

    # Determine relationship between decompositions with varying numbers of sectors
    E, W, SSE, varexpl = archanalysis_fixed_C(E2, E8, noc=8, i_0=0)
    W28 = W
    E, W, SSE, varexpl = archanalysis_fixed_C(E3, E8, noc=8, i_0=0)
    W38 = W
    E, W, SSE, varexpl = archanalysis_fixed_C(E8, E2, noc=2, i_0=0)
    W82 = W
    E, W, SSE, varexpl = archanalysis_fixed_C(E8, E3, noc=3, i_0=0)
    W83 = W

    # Determine colors
    w_list = []
    for j in xrange(len(E_list) - 2):
        XC, S, SSE, varexpl = archanalysis_fixed_C(E_list[j],
                                                   E_list[j + 1],
                                                   noc=j + 3,
                                                   i_0=0)
        W = S
        w = (W / W.sum(axis=0)[None, :]).T  #normalized
        w_list.append(w)

    num_comps = []
    for i in xrange(len(weights)):
        temp_arry = []
        for j in xrange(i + 2):
            temp_arry.append(
                len(np.where(np.argmax(weights[i], axis=0) == j)[0]))
        num_comps.append(np.asarray(temp_arry))

    cs_list = []
    cs = np.asarray([
        '#984EA3', '#E41A1C', '#A65628', '#F781BF', '#4DAF4A', '#377EB8',
        '#FF7F00', '#FFF000'
    ])
    cs_list.append(cs)
    for i in xrange(1, 7):
        cs = define_colors(cs, w_list[-i], num_comps[-i])
        cs_list.append(cs)
    cs_list = cs_list[::-1]

    # Plot pies

    noc = 2
    plt.figure(figsize=(6, 3))
    the_grid = gridspec.GridSpec(1, noc)
    sectors2 = ['c-assets', 'c-goods']

    for j in xrange(noc):
        plt.subplot(the_grid[0, j], aspect=1)
        plt.pie(W28.T[j], colors=cs_list[-1], shadow=True)
        plt.title(sectors2[j], fontsize=20)

    plt.savefig('figures/W28.png', bbox_inches='tight', pad_inches=0)
    plt.close()

    noc = 3
    plt.figure(figsize=(9, 3))
    the_grid = gridspec.GridSpec(1, noc)
    sectors3 = ['c-staples', 'c-assets', 'c-tech']

    for j in xrange(noc):
        plt.subplot(the_grid[0, j], aspect=1)
        plt.pie(W38.T[j], colors=cs_list[-1], shadow=True)
        plt.title(sectors3[j], fontsize=20)

    plt.savefig('figures/W38.png', bbox_inches='tight', pad_inches=0)
    plt.close()

    sectors = np.asarray([
        'c-industrial', 'c-energy', 'c-real estate', 'c-cyclical',
        'c-non-cyclical', 'c-tech', 'c-utility', 'c-financial'
    ])

    noc = 8
    plt.figure(figsize=(24, 3))
    the_grid = gridspec.GridSpec(1, noc)

    for j in xrange(noc):
        plt.subplot(the_grid[0, j], aspect=1)
        plt.pie(W82.T[j], colors=cs_list[0], shadow=True)
        plt.title(sectors[j], fontsize=20)

    plt.savefig('figures/W82.png', bbox_inches='tight', pad_inches=0)
    plt.close()

    noc = 8
    plt.figure(figsize=(24, 3))
    the_grid = gridspec.GridSpec(1, noc)

    for j in xrange(noc):
        plt.subplot(the_grid[0, j], aspect=1)
        plt.pie(W83.T[j], colors=cs_list[1], shadow=True)
        plt.title(sectors[j], fontsize=20)

    plt.savefig('figures/W83.png', bbox_inches='tight', pad_inches=0)
    plt.close()

    return
コード例 #15
0
def single_tetrahedron_st():
    """ 
    Make figure of single tetrahedron along 
    1st two singular vectors 
    colored by scottrade classification 
    """

    # Load Fits
    filename = 'saves/8_factor_matrices.pkl.gz'
    E, W, C, SSE, varexpl = local_load(filename)

    # Calculate Singular Vectors
    A = np.dot(E, W)
    u, s, vt = svd(A.T, full_matrices=0)
    vtE = np.asarray(np.dot(vt, E))

    #Define colors and labels

    cols = [
        '#FFF000', '#FDBF6F', '#A6CEE3', '#33A02C', '#FB9A99', '#B2DF8A',
        '#E31A1C', '#6A3D9A', '#FF7F00', '#543005', '#CAB2D6', '#000000',
        '#1F78B4', '#8C510A'
    ]
    sects = [
        'basic', 'capital', 'cyclical', 'energy', 'fin', 'health', 'noncyc',
        'tech', 'telecom', 'utils', 'miscservices', 'realestate', 'retail',
        'transport'
    ]
    numcos = [58, 61, 41, 42, 107, 53, 40, 93, 6, 57, 55, 31, 46, 15]

    sulis = [[v] * k for k, v in zip(numcos, cols)]
    csuarray = np.array([item for sublist in sulis for item in sublist])

    sulis_sects = [[v] * k for k, v in zip(numcos, sects)]
    sectsarray = np.array(
        [item for sublist in sulis_sects for item in sublist])

    # Plot figure
    matplotlib.rcParams['ytick.color'] = '#636363'
    matplotlib.rcParams['xtick.color'] = '#636363'
    matplotlib.rcParams['axes.linewidth'] = 0
    output = StringIO()
    plt.ioff()

    frameon = False

    i = 0
    j = 1
    xs, ys = u[:, i].T * s[i], u[:, j].T * s[j]
    plt.scatter(xs, ys, s=5, color=csuarray)
    plt.savefig('figures/single_tetrahedron_st.png',
                bbox_inches='tight',
                pad_inches=0)
    plt.clf()

    # Make a legend
    recs = []
    for i in range(0, len(cols)):
        recs.append(mpatches.Rectangle([0, 0], 1, 1, fc=cols[i]))
    plt.legend(recs, sects)
    plt.axis('off')
    plt.savefig('figures/single_tetrahedron_st_legend.png',
                bbox_inches='tight',
                pad_inches=0)
    plt.close()

    return