def test_device(self): device = torch.device("cuda" if torch.cuda.is_available() else "cpu") summary(SingleInputNet(), (1, 28, 28), device=device) input_data = torch.randn(5, 1, 28, 28) summary(SingleInputNet(), input_data) summary(SingleInputNet(), input_data, device=device) summary(SingleInputNet(), input_data.to(device)) summary(SingleInputNet(), input_data.to(device), device=torch.device("cpu"))
def test_single_input(self, capsys): model = SingleInputNet() input_shape = (1, 28, 28) summary(model, input_shape, depth=1) verify_output(capsys, "unit_test/test_output/single_input.out")
def test_single_input(capsys: CaptureFixture[str]) -> None: model = SingleInputNet() input_shape = (1, 28, 28) summary(model, input_shape, depth=1) verify_output(capsys, "unit_test/test_output/single_input.out")
def test_string_result() -> None: results = summary(SingleInputNet(), input_size=(16, 1, 28, 28), verbose=0) result_str = f"{results}\n" verify_output_str(result_str, "tests/test_output/single_input.out")
def test_single_input_all_cols(capsys: pytest.CaptureFixture[str]) -> None: model = SingleInputNet() col_names = ( "kernel_size", "input_size", "output_size", "num_params", "mult_adds", ) input_shape = (7, 1, 28, 28) summary(model, input_size=input_shape, depth=1, col_names=col_names, col_width=20) verify_output(capsys, "tests/test_output/single_input_all.out") summary( model, input_data=torch.randn(*input_shape), depth=1, col_names=col_names, col_width=20, ) verify_output(capsys, "tests/test_output/single_input_all.out")
def test_single_input(self): model = SingleInputNet() input_shape = (1, 28, 28) results = summary(model, input_shape) assert results.total_params == 21840 assert results.trainable_params == 21840
def test_string_result(self): results = summary(SingleInputNet(), (1, 28, 28), verbose=0) result_str = str(results) + "\n" with open("unit_test/test_output/single_input.out", encoding="utf-8") as output_file: expected = output_file.read() assert result_str == expected
def test_row_settings(capsys: pytest.CaptureFixture[str]) -> None: model = SingleInputNet() summary(model, input_size=(16, 1, 28, 28), row_settings=("var_names", )) verify_output(capsys, "tests/test_output/row_settings.out")
def test_single_input(self): model = SingleInputNet() input_shape = (1, 28, 28) results = summary(model, input_shape) assert len(results.summary_list) == 5, "Should find 6 layers" assert results.total_params == 21840 assert results.trainable_params == 21840
def test_batch_size_optimization() -> None: model = SingleInputNet() # batch size intentionally omitted. results = summary(model, (1, 28, 28), batch_dim=0) assert len(results.summary_list) == 5, "Should find 6 layers" assert results.total_params == 21840 assert results.trainable_params == 21840
def test_single_input() -> None: model = SingleInputNet() # input_size keyword arg intentionally omitted. results = summary(model, (2, 1, 28, 28)) assert len(results.summary_list) == 5, "Should find 6 layers" assert results.total_params == 21840 assert results.trainable_params == 21840
def test_string_result() -> None: results = summary(SingleInputNet(), input_size=(16, 1, 28, 28), verbose=0) result_str = str(results) + "\n" with open("tests/test_output/single_input.out", encoding="utf-8") as output_file: expected = output_file.read() assert result_str == expected
def test_single_input_batch_dim(capsys: CaptureFixture[str]) -> None: model = SingleInputNet() input_shape = (7, 1, 28, 28) summary(model, input_shape, depth=1, batch_dim=None) verify_output(capsys, "unit_test/test_output/single_input_batch_dim.out") input_data = torch.randn(*input_shape) summary(model, input_data, depth=1, batch_dim=None) verify_output(capsys, "unit_test/test_output/single_input_batch_dim.out")
def test_device() -> None: device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = SingleInputNet() # input_size summary(model, input_size=(5, 1, 28, 28), device=device) # input_data input_data = torch.randn(5, 1, 28, 28) summary(model, input_data=input_data) summary(model, input_data=input_data, device=device) summary(model, input_data=input_data.to(device)) summary(model, input_data=input_data.to(device), device=torch.device("cpu"))
def test_single_input_with_kernel_macs(capsys): model = SingleInputNet() input_shape = (1, 28, 28) summary( model, input_shape, depth=1, col_names=("kernel_size", "output_size", "num_params", "mult_adds"), col_width=20, ) verify_output(capsys, "unit_test/test_output/single_input_all.out")
def test_single_input_batch_dim( capsys: pytest.CaptureFixture[str]) -> None: model = SingleInputNet() col_names = ( "kernel_size", "input_size", "output_size", "num_params", "mult_adds", ) summary( model, input_size=(1, 28, 28), depth=1, col_names=col_names, col_width=20, batch_dim=0, ) verify_output(capsys, "tests/test_output/single_input_batch_dim.out")
def test_basic_summary(capsys: pytest.CaptureFixture[str]) -> None: model = SingleInputNet() summary(model) verify_output(capsys, "unit_test/test_output/basic_summary.out")
def test_single_input(capsys: pytest.CaptureFixture[str]) -> None: model = SingleInputNet() summary(model, input_size=(16, 1, 28, 28), depth=1) verify_output(capsys, "tests/test_output/single_input.out")
def test_input_tensor(self): input_data = torch.randn(5, 1, 28, 28) metrics = summary(SingleInputNet(), input_data) assert metrics.input_size == [torch.Size([5, 1, 28, 28])]
def test_basic_summary(self, capsys): model = SingleInputNet() summary(model) verify_output(capsys, "unit_test/test_output/basic_summary.out")