コード例 #1
0
def main(_):
    options = get_options_from_flags()
    data_dir = options.data_dir
    download_dir = options.download_dir

    # 디렉토리 생성
    # data_dir = Pretrained 된 Word-Embedding Vector를 다운로드 받을 디렉토리
    # download_dir = SQuAD DataSet를 다운로드 받을 디렉토리
    for d in [data_dir, download_dir]:
        # 디렉토리를 재귀적으로 생성하며 디렉토리가 이미 존재하면 예외를 발생시키지 않음.
        os.makedirs(d, exist_ok=True)

    # 데이터 다운로드 단계
    # 첫째, GloVe vectors를 https://nlp.stanford.edu/projects/glove/ 로 부터 다운로드 받음.
    # 둘째, SQuAD Dataset 다운로드 받음
    if options.word_embedding_model_type == "fasttext":
        download_fasttext_data(download_dir)
    else:
        download_data(download_dir)
    #
    if options.word_embedding_model_type == "fasttext":
        split_vocab_and_embedding_fasttext(options, data_dir, download_dir)
    else:
        split_vocab_and_embedding(options, data_dir, download_dir)
    if options.exobrain_korean_dataset:
        DataParser(data_dir,
                   download_dir).create_train_data_exobrain_korean(options)
    else:
        DataParser(data_dir, download_dir).create_train_data(options)
    if options.use_cove_vectors:
        save_cove_weights(options)
    maybe_upload_data_files_to_s3(options)
コード例 #2
0
ファイル: print_training_data.py プロジェクト: zaczou/qa
def main(_):
    options = get_options_from_flags()
    options.num_gpus = 0
    with tf.Session() as sess:
        squad_data = SquadData(options)
        squad_data.setup_with_tf_session(sess)
        print("TRAIN")
        _print_ds(squad_data.vocab, squad_data.train_ds)
        print("DEV")
        _print_ds(squad_data.vocab, squad_data.dev_ds)
コード例 #3
0
ファイル: test_cove.py プロジェクト: SUKI31711/intQA
def main(_):
    tf.set_random_seed(0)
    np.random.seed(0)
    options = get_options_from_flags()

    inputs = np.random.randint(low=0, high=30, size=(1, 1), dtype=np.int64)
    embeddings = embedding_util \
        .load_word_embeddings_including_unk_and_padding(options)
    torch_output = compute_torch_values(inputs, embeddings)
    tf_cudnn_output = compute_tf_cudnn_values(inputs, embeddings, options)
    tf_output = compute_tf_values(inputs, embeddings, options)

    assert_tensors_equal(torch_output, tf_output, "Torch output", "TF output")
    assert_tensors_equal(tf_cudnn_output, tf_output, "cuDNN TF output",
                         "TF output")
コード例 #4
0
def main(_):
    options = get_options_from_flags()
    update_remote_options(options)
    maybe_download_data_files_from_s3(options)
    Evaluator(options).evaluate()
コード例 #5
0
def main(_):
    options = get_options_from_flags()
    maybe_download_data_files_from_s3(options)
    Evaluator(options).predict()
コード例 #6
0
ファイル: train_local.py プロジェクト: SUKI31711/intQA
def main(_):
    options = get_options_from_flags()
    maybe_download_data_files_from_s3(options)
    Trainer(options).train()