def predictThread(command, output, temp_dir=''): print("Thread Start") success, results = context.predict_cmd(command, output_format=output) shutil.rmtree(temp_dir) # print (f"Folder {temp_dir} removed") print("Thread End")
def put(self, request, modelname, version, format=None): # get the upladed file with name "file" try: file_obj = request.FILES["SDF"] except MultiValueDictKeyError as e: return JsonResponse({'error': 'Datatest not provided'}, status=status.HTTP_400_BAD_REQUEST) # Set the temp filesystem storage temp_dir = tempfile.mkdtemp(prefix="predict_data_", dir=None) fs = FileSystemStorage(location=temp_dir) # save the file to the new filesystem path = fs.save(file_obj.name, ContentFile(file_obj.read())) predict_data = os.path.join(temp_dir, path) arguments = { 'endpoint': modelname, 'version': int(version), 'infile': predict_data } try: success, results = context.predict_cmd(arguments, output_format='JSON') except Exception as e: return Response(str(e), status=status.HTTP_400_BAD_REQUEST) if success: return JsonResponse(json.loads(results), status=status.HTTP_200_OK) else: return Response(results, status=status.HTTP_404_NOT_FOUND)
def POST(self, ifile, model, version, temp_dir): ifile = os.path.join(tempfile.gettempdir(),temp_dir,ifile) # TODO: for now, only working for plain models (no external input sources) model = {'endpoint' : model, 'version' : numeric_version(version), 'label': 'temp', 'infile' : ifile} success, results = context.predict_cmd(model, 'JSON') return results
def main(): LOG.debug('-------------NEW RUN-------------\n') parser = argparse.ArgumentParser( description= 'Use Flame to either build a model from or apply a model to the input file.' ) parser.add_argument('-f', '--infile', help='Input file.', required=False) parser.add_argument('-e', '--endpoint', help='Endpoint model name.', required=False) parser.add_argument('-v', '--version', help='Endpoint model version.', required=False) parser.add_argument('-a', '--action', help='Manage action.', required=False) parser.add_argument( '-c', '--command', action='store', choices=['predict', 'build', 'manage', 'config'], help='Action type: \'predict\' or \'build\' or \'manage\'', required=True) # parser.add_argument('-log', '--loglevel', # help='Logger level of verbosity',) parser.add_argument('-p', '--path', help='Defines de new path for models repository.', required=False) args = parser.parse_args() # init logger Level and set general config # another way around would be create a handler with the level # and append it to the global instance of logger # if args.loglevel: # numeric_level = getattr(logging, args.loglevel.upper(), None) # if not isinstance(numeric_level, int): # raise ValueError('Invalid log level: {}'.format(args.loglevel)) # logging.basicConfig(level=numeric_level) # make sure flame has been configured before running any command, unless this command if used to # configure flame if args.command != 'config': configuration_warning() if args.command == 'predict': if (args.endpoint is None) or (args.infile is None): print( 'flame predict : endpoint and input file arguments are compulsory' ) return version = utils.intver(args.version) command_predict = { 'endpoint': args.endpoint, 'version': version, 'infile': args.infile } LOG.info(f'Starting prediction with model {args.endpoint}' f' version {version} for file {args.infile}') success, results = context.predict_cmd(command_predict) # print('flame predict : ', success, results) elif args.command == 'build': if (args.endpoint is None) or (args.infile is None): print( 'flame build : endpoint and input file arguments are compulsory' ) return command_build = {'endpoint': args.endpoint, 'infile': args.infile} LOG.info(f'Starting building model {args.endpoint}' f' with file {args.infile}') success, results = context.build_cmd(command_build) # print('flame build : ', success, results) elif args.command == 'manage': manage_cmd(args) elif args.command == 'config': config(args.path) change_config_status()
def main(): LOG.debug('-------------NEW RUN-------------\n') parser = argparse.ArgumentParser( description= f'Flame version {__version__}. Use Flame to build and manage predictive models or to predict using them.' ) parser.add_argument('-f', '--infile', help='Input file.', required=False) parser.add_argument('-e', '--endpoint', help='Endpoint model name.', required=False) parser.add_argument('-s', '--space', help='Chemical space name.', required=False) parser.add_argument('-v', '--version', help='Endpoint model version.', required=False) parser.add_argument('-a', '--action', help='Manage action.', required=False) parser.add_argument('-p', '--parameters', help='File with parameters for the current action.', required=False) parser.add_argument( '-c', '--command', action='store', choices=['predict', 'search', 'build', 'sbuild', 'manage', 'config'], help= 'Action type: \'predict\' or \'search\' or \'build\' \'sbuild\' or \'manage\' or \'config\'', required=True) # parser.add_argument('-log', '--loglevel', # help='Logger level of verbosity',) parser.add_argument( '-d', '--directory', help= 'Defines the root directory for the models and spaces repositories.', required=False) parser.add_argument('-t', '--documentation_file', help='File with manually filled documentation fields.', required=False) parser.add_argument( '-l', '--label', help='Label for facilitating the identification of the prediction.', required=False) parser.add_argument( '-inc', '--incremental', help= 'The input file must be added to the existing training series. Only for "build" command.', action='store_true', required=False) parser.add_argument('--smarts', help='SMARTS string used as input for similarity', required=False) args = parser.parse_args() # init logger Level and set general config # another way around would be create a handler with the level # and append it to the global instance of logger # if args.loglevel: # numeric_level = getattr(logging, args.loglevel.upper(), None) # if not isinstance(numeric_level, int): # raise ValueError('Invalid log level: {}'.format(args.loglevel)) # logging.basicConfig(level=numeric_level) if args.infile is not None: if not os.path.isfile(args.infile): LOG.error(f'Input file {args.infile} not found') return # make sure flame has been configured before running any command, unless this command if used to # configure flame if args.command != 'config': utils.config_test() if args.command == 'predict': if (args.endpoint is None) or (args.infile is None): LOG.error( 'flame predict : endpoint and input file arguments are compulsory' ) return version = utils.intver(args.version) if args.label is None: label = 'temp' else: label = args.label command_predict = { 'endpoint': args.endpoint, 'version': version, 'label': label, 'infile': args.infile } LOG.info( f'Starting prediction with model {args.endpoint}' f' version {version} for file {args.infile}, labelled as {label}') success, results = context.predict_cmd(command_predict) if not success: LOG.error(results) elif args.command == 'search': if (args.space is None) or (args.infile is None and args.smarts is None): LOG.error( 'flame search : space and input file arguments are compulsory') return version = utils.intver(args.version) if args.label is None: label = 'temp' else: label = args.label command_search = { 'space': args.space, 'version': version, 'infile': args.infile, 'smarts': args.smarts, 'runtime_param': args.parameters, 'label': label } LOG.info( f'Starting search on space {args.space}' f' version {version} for file {args.infile}, labelled as {label}') success, results = context.search_cmd(command_search) if not success: LOG.error(results) elif args.command == 'build': if (args.endpoint is None): LOG.error('flame build : endpoint argument is compulsory') return command_build = { 'endpoint': args.endpoint, 'infile': args.infile, 'param_file': args.parameters, 'incremental': args.incremental } LOG.info(f'Starting building model {args.endpoint}' f' with file {args.infile} and parameters {args.parameters}') success, results = context.build_cmd(command_build) if not success: LOG.error(results) elif args.command == 'sbuild': if (args.space is None): LOG.error('flame sbuild : space argument is compulsory') return command_build = { 'space': args.space, 'infile': args.infile, 'param_file': args.parameters } LOG.info(f'Starting building model {args.space}' f' with file {args.infile} and parameters {args.parameters}') success, results = context.sbuild_cmd(command_build) if not success: LOG.error(results) elif args.command == 'manage': success, results = context.manage_cmd(args) if not success: LOG.error(results) elif args.command == 'config': success, results = config.configure(args.directory, (args.action == 'silent')) if not success: LOG.error(f'{results}, configuration unchanged')