コード例 #1
0
ファイル: build.py プロジェクト: eTRANSAFE/flame
class Build:
    def __init__(self, model, param_file=None, output_format=None):
        LOG.debug('Starting build...')
        self.model = model
        self.param = Parameters()
        self.conveyor = Conveyor()

        # load parameters
        if param_file is not None:
            # use the param_file to update existing parameters at the model
            # directory and save changes to make them persistent
            success, message = self.param.delta(model, 0, param_file)
        else:
            # load parameter file at the model directory
            success, message = self.param.loadYaml(model, 0)

        # being unable to load parameters is a critical error
        if not success:
            LOG.critical(
                f'Unable to load model parameters. "{message}" Aborting...')
            sys.exit(1)

        # add additional output formats included in the constructor
        # this is requiered to add JSON format as output when the object is
        # instantiated from a web service call, requiring this output
        if output_format is not None:
            if output_format not in self.param.getVal('output_format'):
                self.param.appVal('output_format', output_format)

    def get_model_set(self):
        ''' Returns a Boolean indicating if the model uses external input
            sources and a list with these sources '''
        return self.param.getModelSet()

    def set_single_CPU(self) -> None:
        ''' Forces the use of a single CPU '''
        LOG.debug('parameter "numCPUs" forced to be 1')
        self.param.setVal('numCPUs', 1)

    def run(self, input_source):
        ''' Executes a default predicton workflow '''

        # path to endpoint
        epd = utils.model_path(self.model, 0)
        if not os.path.isdir(epd):
            self.conveyor.setError(f'Unable to find model {self.model}')
            #LOG.error(f'Unable to find model {self.model}')

        # import ichild classes
        if not self.conveyor.getError():
            # uses the child classes within the 'model' folder,
            # to allow customization of  the processing applied to each model
            modpath = utils.module_path(self.model, 0)

            idata_child = importlib.import_module(modpath + ".idata_child")
            learn_child = importlib.import_module(modpath + ".learn_child")
            odata_child = importlib.import_module(modpath + ".odata_child")

            # run idata object, in charge of generate model data from input
            try:
                idata = idata_child.IdataChild(self.param, self.conveyor,
                                               input_source)
            except:
                LOG.warning(
                    'Idata child architecture mismatch, defaulting to Idata parent'
                )
                idata = Idata(self.param, self.conveyor, input_source)
            idata.run()
            LOG.debug(f'idata child {type(idata).__name__} completed `run()`')

        if not self.conveyor.getError():
            # check there is a suitable X and Y
            if not self.conveyor.isKey('xmatrix'):
                self.conveyor.setError(f'Failed to compute MDs')

            if not self.conveyor.isKey('ymatrix'):
                self.conveyor.setError(
                    f'No activity data (Y) found in training series')

        if not self.conveyor.getError():
            # instantiate learn (build a model from idata) and run it
            learn = learn_child.LearnChild(self.param, self.conveyor)
            learn.run()

            try:
                learn = learn_child.LearnChild(self.param, self.conveyor)
            except:
                LOG.warning(
                    'Learn child architecture mismatch, defaulting to Learn parent'
                )
                learn = Learn(self.param, self.conveyor)

            LOG.debug(f'learn child {type(learn).__name__} completed `run()`')

        # run odata object, in charge of formatting the prediction results
        # note that if any of the above steps failed, an error has been inserted in the
        # conveyor and odata will take case of showing an error message
        try:
            odata = odata_child.OdataChild(self.param, self.conveyor)
        except:
            LOG.warning(
                'Odata child architecture mismatch, defaulting to Odata parent'
            )
            odata = Odata(self.param, self.conveyor)

        return odata.run()
コード例 #2
0
ファイル: predict.py プロジェクト: eTRANSAFE/flame
class Predict:

    def __init__(self, model, version, output_format=None):
        LOG.debug('Starting predict...')
        self.model = model
        self.version = version
        self.param = Parameters()
        self.conveyor = Conveyor()

        if not self.param.loadYaml(model, version):
            LOG.critical('Unable to load model parameters. Aborting...')
            sys.exit()

        # add additional output formats included in the constructor 
        # this is requiered to add JSON format as output when the object is
        # instantiated from a web service call, requiring this output   
        if output_format != None:
            if output_format not in self.param.getVal('output_format'):
                self.param.appVal('output_format',output_format)
 
        return

    def get_model_set(self):
        ''' Returns a Boolean indicating if the model uses external input
            sources and a list with these sources '''
        return self.param.getModelSet()

    def set_single_CPU(self) -> None:
        ''' Forces the use of a single CPU '''
        LOG.debug('parameter "numCPUs" forced to be 1')
        self.param.setVal('numCPUs',1)

    def run(self, input_source):
        ''' Executes a default predicton workflow '''

        # path to endpoint
        # path to endpoint
        endpoint = utils.model_path(self.model, self.version)
        if not os.path.isdir(endpoint):
            self.conveyor.setError(f'Unable to find model {self.model}, version {self.version}')
            #LOG.error(f'Unable to find model {self.model}')


        if not self.conveyor.getError():
            # uses the child classes within the 'model' folder,
            # to allow customization of
            # the processing applied to each model
            modpath = utils.module_path(self.model, self.version)

            idata_child = importlib.import_module(modpath+".idata_child")
            apply_child = importlib.import_module(modpath+".apply_child")
            odata_child = importlib.import_module(modpath+".odata_child")

            # run idata object, in charge of generate model data from input
            try:
                idata = idata_child.IdataChild(self.param, self.conveyor, input_source)
            except:
                LOG.warning ('Idata child architecture mismatch, defaulting to Idata parent')
                idata = Idata(self.param, self.conveyor, input_source)

            idata.run()
            LOG.debug(f'idata child {type(idata).__name__} completed `run()`')

        if not self.conveyor.getError():
            # make sure there is X data
            if not self.conveyor.isKey('xmatrix'):
                LOG.debug(f'Failed to compute MDs')
                self.conveyor.setError(f'Failed to compute MDs')

        if not self.conveyor.getError():
            # run apply object, in charge of generate a prediction from idata
            try:
                apply = apply_child.ApplyChild(self.param, self.conveyor)
            except:
                LOG.warning ('Apply child architecture mismatch, defaulting to Apply parent')
                apply = Apply(self.param, self.conveyor)

            apply.run()
            LOG.debug(f'apply child {type(apply).__name__} completed `run()`')

        # run odata object, in charge of formatting the prediction results
        # note that if any of the above steps failed, an error has been inserted in the
        # conveyor and odata will take case of showing an error message
        try:
            odata = odata_child.OdataChild(self.param, self.conveyor)
        except:
            LOG.warning ('Odata child architecture mismatch, defaulting to Odata parent')
            odata = Odata(self.param, self.conveyor)

        return odata.run()