コード例 #1
0
ファイル: square_matrix.py プロジェクト: Ollarin/flame_math
    def mult_vec_upper_symmetric_by_axpy(self, vec):
        """
        This function implements a matrix vector mult based on AXPY using an upper simmetrix matric 

        :vec: Vector, the vector to work on
        :returns: Vector
        """

        result = Vector([0]* self.rows())
        it = self.full_iterator()
        vit = result.vector_iterator()
        
        for i,data in enumerate(it):
            #slicing the vector
            tl, value, bl = vit.next() 
            
            #computing the diagonal value
            value = data["a11"] * vec[i] + value
            
            #we perform two different axpy and we make up for the missing part
            #by using the equivalent transposed of the column below the diagonal
            #aka the row after the diagonal
            tl = data["a01"].axpy(tl,vec[i])    
            bl = data["at12"].axpy(bl,vec[i])    
            
            #merging the result back in
            vit.merge(tl,value,bl)
        
        return result 
コード例 #2
0
ファイル: square_matrix.py プロジェクト: Ollarin/flame_math
    def mult_vec_lower_symmetric_by_axpy(self, vec):
        """
        This function implements a matrix vector mult based on AXPY using an upper simmetrix matric 

        :vec: Vector, the vector to work on
        :returns: Vector
        """

        result = Vector([0]* self.rows())
        it = self.full_iterator()
        vit = result.vector_iterator()
        
        for i,data in enumerate(it):
            #slicing the vector
            tl, value, bl = vit.next() 
            
            #computing the diagonal value
            value = data["a11"] * vec[i] + value
            
            tl = data["at10"].axpy(tl,vec[i])    
            bl = data["a21"].axpy(bl,vec[i])    
            
            #merging the result back in
            vit.merge(tl,value,bl)
        
        return result 
コード例 #3
0
ファイル: square_matrix.py プロジェクト: Ollarin/flame_math
    def mult_vec_lower_triangular_by_axpy(self, vec):
        """
        This function implements a lower triangular matrix vector mult based on AXPY 

        :vec: Vector, the vector to work on
        :returns: Vector
        """


        result = Vector([0]* self.rows())
        it = self.full_iterator()
        vit = result.vector_iterator()
        
        for i,data in enumerate(it):
            #slicing the vector
            tl, value, bl = vit.next() 
            
            #computing the diagonal value
            value = data["a11"] * vec[i] + value
            #computing the upper diagonal value, using an axpy
            #and accumulating in the up vector
            bl = data["a21"].axpy(bl,vec[i])    
            
            #merging the result back in
            vit.merge(tl,value,bl)
        return result 
コード例 #4
0
ファイル: square_matrix.py プロジェクト: jonike/flame_math
    def mult_vec_upper_symmetric_by_axpy(self, vec):
        """
        This function implements a matrix vector mult based on AXPY using an upper simmetrix matric 

        :vec: Vector, the vector to work on
        :returns: Vector
        """

        result = Vector([0] * self.rows())
        it = self.full_iterator()
        vit = result.vector_iterator()

        for i, data in enumerate(it):
            #slicing the vector
            tl, value, bl = vit.next()

            #computing the diagonal value
            value = data["a11"] * vec[i] + value

            #we perform two different axpy and we make up for the missing part
            #by using the equivalent transposed of the column below the diagonal
            #aka the row after the diagonal
            tl = data["a01"].axpy(tl, vec[i])
            bl = data["at12"].axpy(bl, vec[i])

            #merging the result back in
            vit.merge(tl, value, bl)

        return result
コード例 #5
0
ファイル: square_matrix.py プロジェクト: jonike/flame_math
    def mult_vec_lower_symmetric_by_axpy(self, vec):
        """
        This function implements a matrix vector mult based on AXPY using an upper simmetrix matric 

        :vec: Vector, the vector to work on
        :returns: Vector
        """

        result = Vector([0] * self.rows())
        it = self.full_iterator()
        vit = result.vector_iterator()

        for i, data in enumerate(it):
            #slicing the vector
            tl, value, bl = vit.next()

            #computing the diagonal value
            value = data["a11"] * vec[i] + value

            tl = data["at10"].axpy(tl, vec[i])
            bl = data["a21"].axpy(bl, vec[i])

            #merging the result back in
            vit.merge(tl, value, bl)

        return result
コード例 #6
0
ファイル: square_matrix.py プロジェクト: jonike/flame_math
    def mult_vec_lower_triangular_by_axpy(self, vec):
        """
        This function implements a lower triangular matrix vector mult based on AXPY 

        :vec: Vector, the vector to work on
        :returns: Vector
        """

        result = Vector([0] * self.rows())
        it = self.full_iterator()
        vit = result.vector_iterator()

        for i, data in enumerate(it):
            #slicing the vector
            tl, value, bl = vit.next()

            #computing the diagonal value
            value = data["a11"] * vec[i] + value
            #computing the upper diagonal value, using an axpy
            #and accumulating in the up vector
            bl = data["a21"].axpy(bl, vec[i])

            #merging the result back in
            vit.merge(tl, value, bl)
        return result
コード例 #7
0
ファイル: matrix_iterators.py プロジェクト: jonike/flame_math
 def next(self):
     """
     This is the function used to step the iterator forward
     
     :returns: Vector, float, Vector, which are in order the column vector above
               the diagonal, the diagonal value, and the vector below the diagonal
     """
     if self.counter < self.columns:
        #if we did not extinguish the iterator we check if the counter
        #is 0, meaning the first iteration.
        #if this is the case the TL (top left part) of the matrix 
        #will be an empty vector
        #todo: probably the check is useless the slice operation would retunr an empty
        #list anyway
        if self.counter == 0:
            TL = Vector([])
        else:
            TL = Vector(self.data[self.counter][:self.counter])
        
        #we extrapolate out the diagonal value , here is where we lose the reference
        #to the original value
        value = self.data[self.counter][self.counter]
        
        #the BL (bottom left part) is nothing more then the remaining column vector
        #below the the diagonal
        BL = Vector(self.data[self.counter][self.counter+1:])
        self.counter +=1
        return [TL, value, BL]
     else:
        raise StopIteration()
コード例 #8
0
    def test_solve_upper_triangular_system(self):

        mat = SquareMatrix.from_list(3, [-2, 0, 0, -1, -3, 0, 1, -2, 1])
        vec = Vector([6, 9, 3])

        it = vec.vector_iterator(True)

        res = mat.solve_upper_triangular_system(vec)
        self.is_vector_equal_to_list(res, [1, -5, 3])
コード例 #9
0
    def test_creation_from_vectors(self):

        vec1 = Vector(self.lsF2[:4])
        vec2 = Vector.copy(vec1)
        vec3 = Vector.copy(vec1)
        vec4 = Vector.copy(vec1)

        mat = matrix.Matrix.from_vectors([vec1, vec2, vec3, vec4])
        self.is_matrix_equal(self.matF2, mat)
コード例 #10
0
ファイル: test_matrix.py プロジェクト: Ollarin/flame_math
    def test_creation_from_vectors(self):

        vec1 = Vector(self.lsF2[:4])
        vec2 = Vector.copy(vec1)
        vec3 = Vector.copy(vec1)
        vec4 = Vector.copy(vec1)

        mat = matrix.Matrix.from_vectors([vec1,vec2,vec3,vec4])
        self.is_matrix_equal(self.matF2, mat)
コード例 #11
0
    def test_mult_vec_by_axpy_parted(self):

        res = self.matF1.mult_vec_by_axpy_parted(Vector([1, 2, 3, 4]))
        self.is_vector_equal_to_list(res, [0, 0, 0, 0])

        res = self.matF2.mult_vec_by_axpy_parted(Vector([1, 2, 3, 4]))
        self.is_vector_equal_to_list(res, [10, 20, 30, 40])

        res = self.matF3.mult_vec_by_axpy_parted(Vector([5, 4, 3]))
        self.is_vector_equal_to_list(res, [41, 16, 38])
コード例 #12
0
    def test_mult_vec_lower_symmetric_by_axpy(self):

        vec = Vector([3, 5, 3, 4])
        res = self.matF11.mult_vec_lower_symmetric_by_axpy(vec)
        self.is_vector_equal_to_list(res, [38, 41, 49, 60])

        self.matF11.set_upper_simmetry()
        vec = Vector([3, 5, 3, 4])
        res = self.matF11.mult_vec_lower_symmetric_by_axpy(vec)
        self.is_vector_equal_to_list(res, [38, 41, 49, 60])
コード例 #13
0
    def test_solve_upper_triangular_system(self):

        
        mat = SquareMatrix.from_list(3, [-2,0,0,-1,-3,0,1,-2,1])
        vec = Vector([6,9,3])
        
        it = vec.vector_iterator(True)

        res = mat.solve_upper_triangular_system(vec)
        self.is_vector_equal_to_list(res,[1,-5,3]) 
コード例 #14
0
    def test_mult_by_transposed_matrix_axpy(self):

        res = self.matF1.mult_vec_by_transposed_matrix_axpy(
            Vector([1, 2, 3, 4]))
        self.is_vector_equal_to_list(res, [0, 0, 0, 0])

        res = self.matF2.mult_vec_by_transposed_matrix_axpy(
            Vector([1, 2, 3, 4]))
        self.is_vector_equal_to_list(res, [30, 30, 30, 30])

        res = self.matF3.mult_vec_by_transposed_matrix_axpy(Vector([5, 4, 3]))
        self.is_vector_equal_to_list(res, [31, 42, 20])
コード例 #15
0
    def test_mult_vec_by_axpy(self):

        res = self.matF1.mult_vec_by_dot(Vector([1, 2, 3, 4]))
        self.is_vector_equal_to_list(res, [0, 0, 0, 0])

        res = self.matF2.mult_vec_by_dot(Vector([1, 2, 3, 4]))
        self.is_vector_equal_to_list(res, [10, 20, 30, 40])

        #mat = self.matF2.mult_matrix_update_by_column(self.matF9)
        #self.is_matrix_equal_to_matrix(mat, self.matF2)
        res = self.matF3.mult_vec_by_dot(Vector([5, 4, 3]))
        self.is_vector_equal_to_list(res, [41, 16, 38])
コード例 #16
0
    def test_creation(self):

        mat = SquareMatrix(4, None, True)
        self.is_matrix_equal(self.matF8, mat)

        mat = SquareMatrix(4, [
            Vector([1, 0, 0, 0]),
            Vector([0, 1, 0, 0]),
            Vector([0, 0, 1, 0]),
            Vector([0, 0, 0, 1])
        ], False)

        self.is_matrix_equal(self.matF8, mat)
コード例 #17
0
ファイル: matrix_iterators.py プロジェクト: jonike/flame_math
    def next(self):
        
        if (self.end_condition()):
            #top matrix
            #column above diagonal
            self.a01 = Vector(self.data[self.counter][:self.counter])
            #diagonal value 
            self.a11= self.data[self.counter][self.counter]
            #columb below diagonal
            self.a21= Vector(self.data[self.counter][self.counter+1:])            
            #row before diagonal
            self.at10= Vector(Vector([self.data[x][self.counter] for x in range(self.counter)]))
            #row after diagonal
            self.at12 =  Vector([self.data[x][self.counter] for x in range(self.counter+1,self.columns)])
            ##matirces
            if self.counter == 0:
                self.A00 = matrix.Matrix(0,0)
                self.A20 = matrix.Matrix(0,0)
            else:
                self.A00 = matrix.Matrix.from_vectors([Vector(self.data[c][:self.counter] ) for c in range(self.counter)])  
                #here we check first if there is no zero column or row in the matrix we would create, if so we create an empty
                #matrix
                if (self.counter+1 < (self.rows) and self.counter <(self.columns)):
                    self.A20 = matrix.Matrix.from_vectors([Vector(self.data[c][self.counter+1:] ) for c in range(self.counter)])  
                else:
                    self.A20 = matrix.Matrix(0,0)
            #here we need to check if we are not going out of bound
            if (self.counter+1 <self.columns) and self.counter > 0 :
                self.A02 = matrix.Matrix.from_vectors([Vector(self.data[c][:self.counter] ) for c in range(self.counter+1,self.columns)])  
            else:
                self.A02= matrix.Matrix(0,0)
            
            #here we check first if there is no zero column or row in the matrix we would create, if so we create an empty
            #matrix
            if (self.counter+1 < (self.rows) and self.counter+1 <(self.columns)):
                
                self.A22 = matrix.Matrix.from_vectors([Vector(self.data[c][self.counter+1:] ) for c in range(self.counter+1,self.columns)])  
            else:
                self.A22 = matrix.Matrix(0,0)

            
            self.counter += self.counter_speed
            to_return = {"A00": self.A00, 
                         "a01": self.a01, 
                         "A02": self.A02, 
                         "at10":self.at10, 
                         "a11": self.a11, 
                         "at12":self.at12, 
                         "A20": self.A20, 
                         "a21": self.a21, 
                         "A22": self.A22}
            return to_return

        else:
            raise StopIteration()
コード例 #18
0
    def test_solve_lower_triangular_system(self):

        mat = SquareMatrix.from_list(3, [2, 4, 6, 4, -2, -4, -2, 6, 2])
        L, U = mat.lu_factorization()
        vec = Vector([-10, 20, 18])
        res = L.solve_lower_triangular_system(vec)
        self.is_vector_equal_to_list(res, [-10, 40, -16])
コード例 #19
0
    def test_gaussian_appended_reduction_upper_triangular(self):

        mat = SquareMatrix.from_list(3, [2, 4, 6, 4, -2, -4, -2, 6, 2])
        res = mat.gaussian_reduction_upper_triangular(True)

        vec = Vector([-10, 20, 18])
        res = res.gaussian_appended_reduction_upper_triangular(vec)
        self.is_vector_equal_to_list(res, [-10, 40, -16])
コード例 #20
0
    def test_solve_linear_system(self):

        mat = SquareMatrix.from_list(
            4, [2, -2, 4, -4, 0, -1, -1, 1, 1, 1, 5, -3, 2, -1, 4, -8])
        vec = Vector([2, 2, 11, -3])

        res = mat.solve_linear_system(vec)
        self.is_vector_equal_to_list(res, [1, -1, 2, -1])
コード例 #21
0
ファイル: matrix_iterators.py プロジェクト: jonike/flame_math
    def next(self):
        """
        Function to setp forward the iterator
        """

        #first we check if finised the iteration
        if self.counter < self.rows:
            
            #we slice the data and upgrade the counter
            to_return =  Vector([self.data[c][self.counter] for c in xrange(self.columns)])

            self.counter +=1
            return to_return
        else:
            #if we are done we rise a stop iteration exception
            raise StopIteration()
コード例 #22
0
ファイル: square_matrix.py プロジェクト: jonike/flame_math
    def from_list(cls, size=4, data=None):
        """
        Alternative constuctor used to build a square matrix from a list of elements
        Args:

        :size: integer, the size of the NxN matrix
        :data: float[], the data used for thea matrix columns
        """

        vectors = []
        for c in range(size):
            vec = Vector([data[c * size + r] for r in range(size)])
            vectors.append(vec)

        inst = cls(size, vectors, False)
        return inst
コード例 #23
0
    def test_gaussian_reduction_upper_triangular(self):

        mat = SquareMatrix.from_list(3, [2, 4, 6, 4, -2, -4, -2, 6, 2])
        res = mat.gaussian_reduction_upper_triangular()
        self.is_matrix_equal_to_list(res, [2, 0, 0, 4, -10, 0, -2, 10, -8])

        res = mat.gaussian_reduction_upper_triangular(True)
        self.is_matrix_equal_to_list(res, [2, 2, 3, 4, -10, 1.6, -2, 10, -8])

        vec = Vector([-10, 20, 18])
        res = mat.gaussian_reduction_upper_triangular(True, vec)
        self.is_matrix_equal_to_list(res, [2, 2, 3, 4, -10, 1.6, -2, 10, -8])
        self.is_vector_equal_to_list(vec, [-10, 40, -16])

        mat = SquareMatrix.from_list(3, [1, -3, 1, 1, 0, 13, 2, -3, 20])
        res = mat.gaussian_reduction_upper_triangular()
        self.is_matrix_equal_to_list(res, [1, 0, 0, 1, 3, 0, 2, 3, 6])
コード例 #24
0
ファイル: square_matrix.py プロジェクト: jonike/flame_math
    def mult_vec_lower_symmetric_by_dot(self, vec):
        """
        This funtion transforms a vector using a lower simmetric matrix, means 
        we don't neet to use  the upper traingular matrix which might old other
        data, we use dot product under the hood to perform the computation

        :vec: Vector, the vector to be transformed
        """
        result = Vector([0] * self.rows())
        it = self.full_iterator()
        vit = vec.vector_iterator()

        for i, data in enumerate(it):
            #we slice the vector calling manually the iterator next
            tl, value, bl = vit.next()

            #here instead of the upper column before the diagonal we use the
            #row before the diagonal
            result[i] = (data["at10"].dot(tl) + data["a11"] * value +
                         data["a21"].dot(bl))
        return result
コード例 #25
0
ファイル: square_matrix.py プロジェクト: jonike/flame_math
    def mult_vec_upper_symmetric_by_dot(self, vec):
        """
        This function multiplies the given vector by an upper simmetric matrix, this will
        allow to perform less computation by exploiting the simmetry

        :vec: Vector, the vector to be transformed
        :returns: Vector
        """
        result = Vector([0] * self.rows())
        it = self.full_iterator()
        vit = vec.vector_iterator()

        for i, data in enumerate(it):
            #we slice the vector calling manually the iterator next
            tl, value, bl = vit.next()

            #to nothe here instead the first part of the row (before the diagonal
            #we use the column before the diagona, exploiting the simmetry
            result[i] = (data["a01"].dot(tl) + data["a11"] * value +
                         data["at12"].dot(bl))
        return result
コード例 #26
0
ファイル: square_matrix.py プロジェクト: jonike/flame_math
    def solve_lower_triangular_system(self, b):
        """
        This function is going to solve for 
        L*z = b 
        where we solve for z, b is given and L is a lower unit triangular matrix
        (most likely the result of a LU operation)

        :b: Vector, the vector needed to solve the system
        :returns: Vector
        """

        res = Vector.copy(b)
        bit = res.vector_iterator()

        it = self.full_iterator()

        for TL, value, BL in bit:
            data = it.next()

            BL = BL + (-(value * data["a21"]))
            bit.merge(TL, value, BL)

        return res
コード例 #27
0
ファイル: square_matrix.py プロジェクト: Ollarin/flame_math
    def solve_lower_triangular_system(self, b):
        """
        This function is going to solve for 
        L*z = b 
        where we solve for z, b is given and L is a lower unit triangular matrix
        (most likely the result of a LU operation)

        :b: Vector, the vector needed to solve the system
        :returns: Vector
        """

        res = Vector.copy(b)
        bit = res.vector_iterator()
        
        it = self.full_iterator()

        for TL,value,BL in bit:
            data = it.next()

            BL = BL + (-(value * data["a21"]))
            bit.merge(TL,value,BL)

        return res
コード例 #28
0
ファイル: square_matrix.py プロジェクト: jonike/flame_math
    def mult_vec_lower_triangular_by_dot(self, vec):
        """
        This function is multiplying a vector by an upper triangular matrix
        using a parted matrix and the dot product approach, the optimmization comes
        from the fact we don't need to perform the computation of the row after the
        current diagonal index
        
        :vec: Vector, the value to multiply
        :returns: Vector
        """

        result = Vector([0] * self.rows())
        it = self.full_iterator()
        vit = vec.vector_iterator()

        for i, data in enumerate(it):
            #we slice the vector calling manually the iterator next
            tl, value, bl = vit.next()
            #we accumualte the result in the proper index of the result vector
            #the result is composed of the result of diagonal value being multiplied
            #plus the row before the diagonal
            result[i] = (data["a11"] * value + tl.dot(data["at10"]))

        return result
コード例 #29
0
ファイル: square_matrix.py プロジェクト: Ollarin/flame_math
    def solve_upper_triangular_system(self,b):
        """
        This function is the complementary one for solving a liner equation system
        based on LU,
        with solve_lower_triangular_system we solved L* z = b
        where now we can solve U* x = b where z = U*x and U is the upper triangular 
        matrix from the factoriazition, basically we are performing a backward sostiuition 

        :b: Vector, the vector needed to solve the system
        :returns: Vector
        """ 
        res = Vector.copy(b)
        bit = res.vector_iterator(True)
        it = self.full_iterator(True)

        for TL,value,BL in bit:
            data = it.next()
            
            value -= data["at12"].dot(BL)
            value /= data["a11"]

            bit.merge(TL,value,BL)

        return res
コード例 #30
0
ファイル: square_matrix.py プロジェクト: jonike/flame_math
    def solve_upper_triangular_system(self, b):
        """
        This function is the complementary one for solving a liner equation system
        based on LU,
        with solve_lower_triangular_system we solved L* z = b
        where now we can solve U* x = b where z = U*x and U is the upper triangular 
        matrix from the factoriazition, basically we are performing a backward sostiuition 

        :b: Vector, the vector needed to solve the system
        :returns: Vector
        """
        res = Vector.copy(b)
        bit = res.vector_iterator(True)
        it = self.full_iterator(True)

        for TL, value, BL in bit:
            data = it.next()

            value -= data["at12"].dot(BL)
            value /= data["a11"]

            bit.merge(TL, value, BL)

        return res
コード例 #31
0
ファイル: square_matrix.py プロジェクト: jonike/flame_math
 def copy(cls, mat):
     """
     Alternative constructor to generate a matrix identical to the given one
     """
     return cls(mat.columns(),
                [Vector.copy(v) for v in mat.column_iterator()], False)
コード例 #32
0
    def test_mult_vec_upper_triangular_by_axpy(self):

        vec = Vector([1, 2, 3, 4])
        res = self.matF9.mult_vec_upper_triangular_by_axpy(vec)
        self.is_vector_equal_to_list(res, [10, 18, 21, 16])
コード例 #33
0
    def test_mult_vec_lower_triangular_by_axpy(self):

        vec = Vector([1, 2, 3, 4])
        res = self.matF11.mult_vec_lower_triangular_by_axpy(vec)
        self.is_vector_equal_to_list(res, [1, 6, 18, 40])
コード例 #34
0
ファイル: matrix_iterators.py プロジェクト: jonike/flame_math
    def merge(self, TL, value, BL):

        self.data[self.counter -1] = Vector(TL.values + [value] + BL.values)
コード例 #35
0
ファイル: square_matrix.py プロジェクト: Ollarin/flame_math
 def copy(cls, mat):
     """
     Alternative constructor to generate a matrix identical to the given one
     """
     return cls(mat.columns(),[Vector.copy(v) for v in mat.column_iterator()],False)