コード例 #1
0
    def run(self):
        output.write_header(self.gp.cutoffs, self.gp.kernel_name, self.gp.hyps,
                            self.gp.algo, self.dt, self.number_of_steps,
                            self.structure, self.output_name, 1.)
        self.write_mgp_header()

        counter = 0
        self.start_time = time.time()

        while self.curr_step < self.number_of_steps:
            self.pred_func()
            self.dft_step = False
            new_pos = md.update_positions(self.dt, self.noa, self.structure)

            if self.curr_step in self.dft_steps:
                # record GP forces
                self.update_temperature(new_pos)
                self.record_state()

                # run DFT and record forces
                self.dft_step = True
                self.run_dft()
                new_pos = md.update_positions(self.dt, self.noa,
                                              self.structure)
                self.update_temperature(new_pos)
                self.record_state()

            # write gp forces
            if counter >= self.skip and not self.dft_step:
                self.update_temperature(new_pos)
                self.record_state()
                counter = 0

            counter += 1
            self.update_positions(new_pos)
            self.curr_step += 1

        output.conclude_run(self.output_name)
コード例 #2
0
ファイル: md_run.py プロジェクト: nw13slx/flare-RC
    def run(self):
        self.output.write_header(self.gp.cutoffs, self.gp.kernel_name, self.gp.hyps,
                                 self.gp.algo, self.dt, self.Nsteps, self.structure)
        self.start_time = time.time()

        while self.curr_step < self.Nsteps:
            # verlet algorithm follows Frenkel p. 70
            self.pred_func()
            new_pos = md.update_positions(self.dt, self.noa, self.structure)
            self.update_temperature(new_pos)
            self.record_state()
            self.update_positions(new_pos)
            self.curr_step += 1

        self.output.conclude_run()
コード例 #3
0
    def run(self):
        self.output.write_header(self.gp.cutoffs, self.gp.kernel_name,
                                 self.gp.hyps, self.gp.algo, self.dt,
                                 self.number_of_steps, self.structure,
                                 self.std_tolerance)
        counter = 0
        self.start_time = time.time()

        while self.curr_step < self.number_of_steps:
            print('curr_step:', self.curr_step)
            # run DFT and train initial model if first step and DFT is on
            if self.curr_step == 0 and self.std_tolerance != 0:
                # call dft and update positions
                self.run_dft()
                dft_frcs = copy.deepcopy(self.structure.forces)
                new_pos = md.update_positions(self.dt, self.noa,
                                              self.structure)
                self.update_temperature(new_pos)
                self.record_state()

                # make initial gp model and predict forces
                self.update_gp(self.init_atoms, dft_frcs)
                if (self.dft_count - 1) < self.freeze_hyps:
                    self.train_gp()

            # after step 1, try predicting with GP model
            else:
                self.gp.check_L_alpha()
                self.pred_func(self.structure, self.gp, self.no_cpus)
                self.dft_step = False
                new_pos = md.update_positions(self.dt, self.noa,
                                              self.structure)

                # get max uncertainty atoms
                std_in_bound, target_atoms = is_std_in_bound(
                    self.std_tolerance, self.gp.hyps[-1], self.structure,
                    self.max_atoms_added)

                if not std_in_bound:
                    # record GP forces
                    self.update_temperature(new_pos)
                    self.record_state()
                    gp_frcs = copy.deepcopy(self.structure.forces)

                    # run DFT and record forces
                    self.dft_step = True
                    self.run_dft()
                    dft_frcs = copy.deepcopy(self.structure.forces)
                    new_pos = md.update_positions(self.dt, self.noa,
                                                  self.structure)
                    self.update_temperature(new_pos)
                    self.record_state()

                    # compute mae and write to output
                    mae = np.mean(np.abs(gp_frcs - dft_frcs))
                    mac = np.mean(np.abs(dft_frcs))

                    self.output.write_to_log('\nmean absolute error:'
                                             ' %.4f eV/A \n' % mae)
                    self.output.write_to_log('mean absolute dft component:'
                                             ' %.4f eV/A \n' % mac)

                    # add max uncertainty atoms to training set
                    self.update_gp(target_atoms, dft_frcs)
                    if (self.dft_count - 1) < self.freeze_hyps:
                        self.train_gp()

            # write gp forces
            if counter >= self.skip and not self.dft_step:
                self.update_temperature(new_pos)
                self.record_state()
                counter = 0

            counter += 1
            self.update_positions(new_pos)
            self.curr_step += 1

        self.output.conclude_run()
コード例 #4
0
 def md_step(self):
     """
     Take an MD step. This updates the positions of the structure.
     """
     md.update_positions(self.dt, self.noa, self.structure)
コード例 #5
0
    def run(self):
        """
        Performs an on-the-fly training run.

        If OTF has store_dft_output set, then the specified DFT files will
        be copied with the current date and time prepended in the format
        'Year.Month.Day:Hour:Minute:Second:'.
        """

        self.output.write_header(self.gp.cutoffs, self.gp.kernel_name,
                                 self.gp.hyps, self.gp.opt_algorithm, self.dt,
                                 self.number_of_steps, self.structure,
                                 self.std_tolerance)
        counter = 0
        self.start_time = time.time()

        while self.curr_step < self.number_of_steps:
            # run DFT and train initial model if first step and DFT is on
            if self.curr_step == 0 and self.std_tolerance != 0 and len(
                    self.gp.training_data) == 0:
                # call dft and update positions
                self.run_dft()
                dft_frcs = copy.deepcopy(self.structure.forces)
                new_pos = md.update_positions(self.dt, self.noa,
                                              self.structure)
                self.update_temperature(new_pos)
                self.record_state()

                # make initial gp model and predict forces
                self.update_gp(self.init_atoms, dft_frcs)
                if (self.dft_count - 1) < self.freeze_hyps:
                    self.train_gp()
                    if self.write_model >= 2:
                        self.gp.write_model(self.output_name + "_model")

            # after step 1, try predicting with GP model
            else:
                self.gp.check_L_alpha()
                self.pred_func(self.structure, self.gp, self.n_cpus)
                self.dft_step = False
                new_pos = md.update_positions(self.dt, self.noa,
                                              self.structure)

                # get max uncertainty atoms
                std_in_bound, target_atoms = \
                    is_std_in_bound(self.std_tolerance,
                                    self.gp.hyps[-1], self.structure,
                                    self.max_atoms_added)

                if not std_in_bound:
                    # record GP forces
                    self.update_temperature(new_pos)
                    self.record_state()
                    gp_frcs = copy.deepcopy(self.structure.forces)

                    # run DFT and record forces
                    self.dft_step = True
                    self.run_dft()
                    dft_frcs = copy.deepcopy(self.structure.forces)
                    new_pos = md.update_positions(self.dt, self.noa,
                                                  self.structure)
                    self.update_temperature(new_pos)
                    self.record_state()

                    # compute mae and write to output
                    mae = np.mean(np.abs(gp_frcs - dft_frcs))
                    mac = np.mean(np.abs(dft_frcs))

                    self.output.write_to_log('\nmean absolute error:'
                                             ' %.4f eV/A \n' % mae)
                    self.output.write_to_log('mean absolute dft component:'
                                             ' %.4f eV/A \n' % mac)

                    # add max uncertainty atoms to training set
                    self.update_gp(target_atoms, dft_frcs)

                    if (self.dft_count - 1) < self.freeze_hyps:
                        self.train_gp()
                        if self.write_model == 2:
                            self.gp.write_model(self.output_name + "_model")
                    if self.write_model == 3:
                        self.gp.write_model(self.output_name + '_model')

            # write gp forces
            if counter >= self.skip and not self.dft_step:
                self.update_temperature(new_pos)
                self.record_state()
                counter = 0

            counter += 1
            self.update_positions(new_pos)
            self.curr_step += 1

        self.output.conclude_run()

        if self.write_model >= 1:
            self.gp.write_model(self.output_name + "_model")