# you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from flash.core.data.utils import download_data from flash.image import ObjectDetector # 1. Download the data # Dataset Credit: https://www.kaggle.com/ultralytics/coco128 download_data( "https://github.com/zhiqwang/yolov5-rt-stack/releases/download/v0.3.0/coco128.zip", "data/") # 2. Load the model from a checkpoint model = ObjectDetector.load_from_checkpoint( "https://flash-weights.s3.amazonaws.com/object_detection_model.pt") # 3. Detect the object on the images predictions = model.predict([ "data/coco128/images/train2017/000000000025.jpg", "data/coco128/images/train2017/000000000520.jpg", "data/coco128/images/train2017/000000000532.jpg", ]) print(predictions)
def test_load_from_checkpoint_dependency_error(): with pytest.raises(ModuleNotFoundError, match=re.escape("'lightning-flash[image]'")): ObjectDetector.load_from_checkpoint("not_a_real_checkpoint.pt")