コード例 #1
0
def test_categorical_target(tmpdir):
    train_df = TEST_DF_1.copy()
    valid_df = TEST_DF_2.copy()
    test_df = TEST_DF_2.copy()
    for df in [train_df, valid_df, test_df]:
        # change int label to string
        df["label"] = df["label"].astype(str)

    dm = TabularData(
        train_df,
        categorical_input=["category"],
        numerical_input=["scalar_b", "scalar_b"],
        target="label",
        valid_df=valid_df,
        test_df=test_df,
        num_workers=0,
        batch_size=1,
    )
    for dl in [
            dm.train_dataloader(),
            dm.val_dataloader(),
            dm.test_dataloader()
    ]:
        (cat, num), target = next(iter(dl))
        assert cat.shape == (1, 1)
        assert num.shape == (1, 2)
        assert target.shape == (1, )
コード例 #2
0
def test_empty_inputs():
    train_df = TEST_DF_1.copy()
    with pytest.raises(RuntimeError):
        TabularData.from_df(train_df,
                            numerical_cols=None,
                            categorical_cols=None,
                            target_col="label",
                            num_workers=0,
                            batch_size=1)
コード例 #3
0
def test_empty_inputs():
    train_data_frame = TEST_DF_1.copy()
    with pytest.raises(RuntimeError):
        TabularData.from_data_frame(
            numerical_fields=None,
            categorical_fields=None,
            target_fields="label",
            train_data_frame=train_data_frame,
            num_workers=0,
            batch_size=1,
        )
コード例 #4
0
def test_categorical_target(tmpdir):
    train_data_frame = TEST_DF_1.copy()
    val_data_frame = TEST_DF_2.copy()
    test_data_frame = TEST_DF_2.copy()
    for df in [train_data_frame, val_data_frame, test_data_frame]:
        # change int label to string
        df["label"] = df["label"].astype(str)

    dm = TabularData.from_data_frame(
        categorical_fields=["category"],
        numerical_fields=["scalar_b", "scalar_b"],
        target_fields="label",
        train_data_frame=train_data_frame,
        val_data_frame=val_data_frame,
        test_data_frame=test_data_frame,
        num_workers=0,
        batch_size=1,
    )
    for dl in [dm.train_dataloader(), dm.val_dataloader(), dm.test_dataloader()]:
        data = next(iter(dl))
        (cat, num) = data[DefaultDataKeys.INPUT]
        target = data[DefaultDataKeys.TARGET]
        assert cat.shape == (1, 1)
        assert num.shape == (1, 2)
        assert target.shape == (1, )
コード例 #5
0
def test_from_csv(tmpdir):
    train_csv = Path(tmpdir) / "train.csv"
    val_csv = test_csv = Path(tmpdir) / "valid.csv"
    TEST_DF_1.to_csv(train_csv)
    TEST_DF_2.to_csv(val_csv)
    TEST_DF_2.to_csv(test_csv)

    dm = TabularData.from_csv(categorical_fields=["category"],
                              numerical_fields=["scalar_a", "scalar_b"],
                              target_fields="label",
                              train_file=str(train_csv),
                              val_file=str(val_csv),
                              test_file=str(test_csv),
                              num_workers=0,
                              batch_size=1)
    for dl in [
            dm.train_dataloader(),
            dm.val_dataloader(),
            dm.test_dataloader()
    ]:
        data = next(iter(dl))
        (cat, num) = data[DefaultDataKeys.INPUT]
        target = data[DefaultDataKeys.TARGET]
        assert cat.shape == (1, 1)
        assert num.shape == (1, 2)
        assert target.shape == (1, )
コード例 #6
0
def test_classification(tmpdir):

    train_df = TEST_DF_1.copy()
    val_df = TEST_DF_1.copy()
    test_df = TEST_DF_1.copy()
    data = TabularData.from_df(
        train_df,
        categorical_cols=["category"],
        numerical_cols=["scalar_a", "scalar_b"],
        target_col="label",
        val_df=val_df,
        test_df=test_df,
        num_workers=0,
        batch_size=2,
    )
    model = TabularClassifier(num_features=3, num_classes=2, embedding_sizes=data.emb_sizes)
    trainer = pl.Trainer(fast_dev_run=True, default_root_dir=tmpdir)
    trainer.fit(model, data)
コード例 #7
0
def test_from_df(tmpdir):
    train_df = TEST_DF_1.copy()
    val_df = TEST_DF_2.copy()
    test_df = TEST_DF_2.copy()
    dm = TabularData.from_df(train_df,
                             categorical_cols=["category"],
                             numerical_cols=["scalar_b", "scalar_b"],
                             target_col="label",
                             val_df=val_df,
                             test_df=test_df,
                             num_workers=0,
                             batch_size=1)
    for dl in [
            dm.train_dataloader(),
            dm.val_dataloader(),
            dm.test_dataloader()
    ]:
        (cat, num), target = next(iter(dl))
        assert cat.shape == (1, 1)
        assert num.shape == (1, 2)
        assert target.shape == (1, )
コード例 #8
0
def test_tabular_data(tmpdir):
    train_data_frame = TEST_DF_1.copy()
    val_data_frame = TEST_DF_2.copy()
    test_data_frame = TEST_DF_2.copy()
    dm = TabularData.from_data_frame(
        categorical_cols=["category"],
        numerical_cols=["scalar_b", "scalar_b"],
        target_col="label",
        train_data_frame=train_data_frame,
        val_data_frame=val_data_frame,
        test_data_frame=test_data_frame,
        num_workers=0,
        batch_size=1,
    )
    for dl in [dm.train_dataloader(), dm.val_dataloader(), dm.test_dataloader()]:
        data = next(iter(dl))
        (cat, num) = data[DefaultDataKeys.INPUT]
        target = data[DefaultDataKeys.TARGET]
        assert cat.shape == (1, 1)
        assert num.shape == (1, 2)
        assert target.shape == (1, )
コード例 #9
0
def test_from_csv(tmpdir):
    train_csv = Path(tmpdir) / "train.csv"
    val_csv = test_csv = Path(tmpdir) / "valid.csv"
    TEST_DF_1.to_csv(train_csv)
    TEST_DF_2.to_csv(val_csv)
    TEST_DF_2.to_csv(test_csv)

    dm = TabularData.from_csv(train_csv=train_csv,
                              categorical_cols=["category"],
                              numerical_cols=["scalar_b", "scalar_b"],
                              target_col="label",
                              val_csv=val_csv,
                              test_csv=test_csv,
                              num_workers=0,
                              batch_size=1)
    for dl in [
            dm.train_dataloader(),
            dm.val_dataloader(),
            dm.test_dataloader()
    ]:
        (cat, num), target = next(iter(dl))
        assert cat.shape == (1, 1)
        assert num.shape == (1, 2)
        assert target.shape == (1, )
コード例 #10
0
# See the License for the specific language governing permissions and
# limitations under the License.
from torchmetrics.classification import Accuracy, Precision, Recall

import flash
from flash.data.utils import download_data
from flash.tabular import TabularClassifier, TabularData

# 1. Download the data
download_data("https://pl-flash-data.s3.amazonaws.com/titanic.zip", "data/")

# 2. Load the data
datamodule = TabularData.from_csv(
    ["Sex", "Age", "SibSp", "Parch", "Ticket", "Cabin", "Embarked"],
    ["Fare"],
    target_field="Survived",
    train_file="./data/titanic/titanic.csv",
    test_file="./data/titanic/test.csv",
    val_split=0.25,
)

# 3. Build the model
model = TabularClassifier.from_data(
    datamodule, metrics=[Accuracy(), Precision(),
                         Recall()])

# 4. Create the trainer
trainer = flash.Trainer(fast_dev_run=True)

# 5. Train the model
trainer.fit(model, datamodule=datamodule)
コード例 #11
0
# limitations under the License.
from torchmetrics.classification import Accuracy, Precision, Recall

import flash
from flash.data.utils import download_data
from flash.tabular import TabularClassifier, TabularData

# 1. Download the data
download_data("https://pl-flash-data.s3.amazonaws.com/titanic.zip", "data/")

# 2. Load the data
datamodule = TabularData.from_csv(
    target_col="Survived",
    train_csv="./data/titanic/titanic.csv",
    test_csv="./data/titanic/test.csv",
    categorical_cols=[
        "Sex", "Age", "SibSp", "Parch", "Ticket", "Cabin", "Embarked"
    ],
    numerical_cols=["Fare"],
    val_size=0.25,
)

# 3. Build the model
model = TabularClassifier.from_data(
    datamodule, metrics=[Accuracy(), Precision(),
                         Recall()])

# 4. Create the trainer
trainer = flash.Trainer(fast_dev_run=True)

# 5. Train the model
trainer.fit(model, datamodule=datamodule)