コード例 #1
0
ファイル: btop.py プロジェクト: seanbme123/pythonProject3
def ff_function(function, process, **kwargs):
    return lambda wc_obj, par_dict, q2: function(process, q2, par_dict, **
                                                 kwargs)


for p in processes_H2L + processes_H2H:
    quantity = p + ' form factor'
    a = AuxiliaryQuantity(name=quantity, arguments=['q2'])
    a.set_description('Hadronic form factor for the ' + p + ' transition')

    iname = p + ' BSZ3'
    i = Implementation(name=iname,
                       quantity=quantity,
                       function=ff_function(bsz.ff, p, n=3))
    i.set_description(
        "3-parameter BSZ parametrization (see arXiv:1811.00983).")

    iname = p + ' BCL3'
    i = Implementation(name=iname,
                       quantity=quantity,
                       function=ff_function(bcl.ff, p, n=3))
    i.set_description("3-parameter BCL parametrization (see arXiv:0807.2722).")

    iname = p + ' BCL4'
    i = Implementation(name=iname,
                       quantity=quantity,
                       function=ff_function(bcl.ff, p, n=4))
    i.set_description("4-parameter BCL parametrization (see arXiv:0807.2722).")

    iname = p + ' BCL3-IW'
    i = Implementation(name=iname,
コード例 #2
0
ファイル: btop.py プロジェクト: peterstangl/flavio
processes_H2H = ['B->D', ]  # heavy to heavy


def ff_function(function, process, **kwargs):
    return lambda wc_obj, par_dict, q2: function(process, q2, par_dict, **kwargs)


for p in processes_H2L + processes_H2H:
    quantity = p + ' form factor'
    a = AuxiliaryQuantity(name=quantity, arguments=['q2'])
    a.set_description('Hadronic form factor for the ' + p + ' transition')

    iname = p + ' BSZ3'
    i = Implementation(name=iname, quantity=quantity,
                       function=ff_function(bsz.ff, p, n=3))
    i.set_description("3-parameter BSZ parametrization (see arXiv:1811.00983).")

    iname = p + ' BCL3'
    i = Implementation(name=iname, quantity=quantity,
                   function=ff_function(bcl.ff, p, n=3))
    i.set_description("3-parameter BCL parametrization (see arXiv:0807.2722).")

    iname = p + ' BCL4'
    i = Implementation(name=iname, quantity=quantity,
                   function=ff_function(bcl.ff, p, n=4))
    i.set_description("4-parameter BCL parametrization (see arXiv:0807.2722).")

    iname = p + ' BCL3-IW'
    i = Implementation(name=iname, quantity=quantity,
                   function=ff_function(bcl.ff_isgurwise, p,
                   scale=config['renormalization scale']['bpll'], n=3))
コード例 #3
0
    return function

# ... and the same for the interpolated version (see qcdf_interpolate.py)
def ha_qcdf_interpolate_function(B, V, contribution='all'):
    scale = config['renormalization scale']['bvll']
    def function(wc_obj, par_dict, q2, cp_conjugate):
        return flavio.physics.bdecays.bvll.qcdf_interpolate.helicity_amps_qcdf(q2, par_dict, B, V, cp_conjugate, contribution)
    return function

# loop over hadronic transitions and lepton flavours
# BTW, it is not necessary to loop over tau: for tautau final states, the minimum
# q2=4*mtau**2 is so high that QCDF is not valid anymore anyway!
for had in [('B0','K*0'), ('B+','K*+'), ('B0','rho0'), ('B+','rho+'), ('Bs','phi'), ]:
    process = had[0] + '->' + had[1] + 'll' # e.g. B0->K*0mumu
    quantity = process + ' spectator scattering'
    a = AuxiliaryQuantity(name=quantity, arguments=['q2', 'cp_conjugate'])
    a.description = ('Contribution to ' + process + ' helicity amplitudes from'
                    ' non-factorizable spectator scattering.')

    # Implementation: QCD factorization
    iname = process + ' QCDF'
    i = Implementation(name=iname, quantity=quantity,
                   function=ha_qcdf_function(B=had[0], V=had[1]))
    i.set_description("QCD factorization")

    # Implementation: interpolated QCD factorization
    iname = process + ' QCDF interpolated'
    i = Implementation(name=iname, quantity=quantity,
                   function=ha_qcdf_interpolate_function(B=had[0], V=had[1]))
    i.set_description("Interpolated version of QCD factorization")
コード例 #4
0
for had in [('B0','K*0'), ('B+','K*+'), ('Bs','phi'), ]:
    process = had[0] + '->' + had[1] + 'll' # e.g. B0->K*0mumu
    quantity = process + ' subleading effects at low q2'
    a = AuxiliaryQuantity(name=quantity, arguments=['q2', 'cp_conjugate'])
    a.description = ('Contribution to ' + process + ' helicity amplitudes from'
                    ' subleading hadronic effects (i.e. all effects not included'
                    r'elsewhere) at $q^2$ below the charmonium resonances')


    # Implementation: C7-C7'-polynomial
    iname = process + ' deltaC7, 7p polynomial'
    i = Implementation(name=iname, quantity=quantity,
                   function=fct_deltaC7C7p_polynomial(B=had[0], V=had[1]))
    i.set_description(r"Effective shift in the Wilson coefficient $C_7(\mu_b)$"
                      r" (in the $0$ and $-$ helicity amplitudes) and"
                      r" $C_7'(\mu_b)$ (in the $+$ helicity amplitude)"
                      r" as a first-order polynomial in $q^2$.")


# AuxiliaryQuantity & Implementation: subleading effects at HIGH q^2

for had in [('B0','K*0'), ('B+','K*+'), ('Bs','phi'), ]:
    process = had[0] + '->' + had[1] + 'll' # e.g. B0->K*0mumu
    quantity = process + ' subleading effects at high q2'
    a = AuxiliaryQuantity(name=quantity, arguments=['q2', 'cp_conjugate'])
    a.description = ('Contribution to ' + process + ' helicity amplitudes from'
                    ' subleading hadronic effects (i.e. all effects not included'
                    r'elsewhere) at $q^2$ above the charmonium resonances')

    # Implementation: C9 constant shift
    iname = process + ' deltaC9 shift'
コード例 #5
0
def ff_function(function, process, **kwargs):
    return lambda wc_obj, par_dict, q2: function(process, q2, par_dict, **
                                                 kwargs)


for p in processes:
    quantity = p + ' form factor'
    a = AuxiliaryQuantity(name=quantity, arguments=['q2'])
    a.set_description('Hadronic form factor for the ' + p + ' transition')

    iname = p + ' BSZ2'
    i = Implementation(name=iname,
                       quantity=quantity,
                       function=ff_function(bsz.ff, p, n=2))
    i.set_description(
        "2-parameter BSZ parametrization (see arXiv:1811.00983).")

    iname = p + ' BCL2'
    i = Implementation(name=iname,
                       quantity=quantity,
                       function=ff_function(bcl.ff, p, n=2))
    i.set_description("2-parameter BCL parametrization (see arXiv:0807.2722).")

    iname = p + ' BSZ3'
    i = Implementation(name=iname,
                       quantity=quantity,
                       function=ff_function(bsz.ff, p, n=3))
    i.set_description(
        "3-parameter BSZ parametrization (see arXiv:1811.00983).")
コード例 #6
0
ファイル: btov.py プロジェクト: flav-io/flavio
processes = ["B->K*", "B->rho", "B->omega", "Bs->phi", "Bs->K*", "B->D*"]


def ff_function(function, process, **kwargs):
    return lambda wc_obj, par_dict, q2: function(process, q2, par_dict, **kwargs)


for p in processes:
    quantity = p + " form factor"
    a = AuxiliaryQuantity(name=quantity, arguments=["q2"])
    a.set_description("Hadronic form factor for the " + p + " transition")

    iname = p + " BSZ2"
    i = Implementation(name=iname, quantity=quantity, function=ff_function(bsz.ff, p, n=2))
    i.set_description("2-parameter BSZ parametrization (see arXiv:1503.05534)")

    iname = p + " BSZ3"
    i = Implementation(name=iname, quantity=quantity, function=ff_function(bsz.ff, p, n=3))
    i.set_description("3-parameter BSZ parametrization (see arXiv:1503.05534)")

    iname = p + " SSE"
    i = Implementation(name=iname, quantity=quantity, function=ff_function(sse.ff, p, n=2))
    i.set_description("2-parameter simplified series expansion")

    iname = p + " CLN-IW"
    i = Implementation(
        name=iname, quantity=quantity, function=ff_function(cln.ff, p, scale=config["renormalization scale"]["bvll"])
    )
    i.set_description("CLN parametrization using improved Isgur-Wise relations" " for the tensor form factors")
コード例 #7
0
ファイル: bgamma.py プロジェクト: seanbme123/pythonProject3
def ff(q2, par, B):
    r"""Central value of $B(s)\to \gamma$ form factors

    See hep-ph/0208256.pdf.
    """
    flavio.citations.register("Kruger:2002gf")
    fB = par['f_' + B]
    mB = par['m_' + B]
    name = 'B->gamma KM '
    ff = {}
    ff['v'] = par[name + 'betav'] * fB * mB / (par[name + 'deltav'] + mB / 2 *
                                               (1 - q2 / mB**2))
    ff['a'] = par[name + 'betaa'] * fB * mB / (par[name + 'deltaa'] + mB / 2 *
                                               (1 - q2 / mB**2))
    ff['tv'] = par[name + 'betatv'] * fB * mB / (par[name + 'deltatv'] +
                                                 mB / 2 * (1 - q2 / mB**2))
    ff['ta'] = par[name + 'betata'] * fB * mB / (par[name + 'deltata'] +
                                                 mB / 2 * (1 - q2 / mB**2))
    return ff


quantity = 'B->gamma form factor'
a = AuxiliaryQuantity(name=quantity, arguments=['q2'])
a.set_description('Form factor for the B(s)->gamma transition')

i = Implementation(
    name="B->gamma KM",
    quantity=quantity,
    function=lambda wc_obj, par_dict, q2, B: ff(q2, par_dict, B))
i.set_description("KM parametrization (see hep-ph/0208256.pdf).")
コード例 #8
0
    ff['f+'] = fp_0 * fp_bar
    ff['f0'] = fp_0 * f0_bar
    return ff


def fT_pole(q2, par):
    # specific parameters
    fT_0 = par['K->pi fT(0)']
    sT = par['K->pi sT']
    ff = {}
    # (4) of 1108.1021
    ff['fT'] = fT_0 / (1 - sT * q2)
    return ff


def ff_dispersive_pole(wc_obj, par_dict, q2):
    ff = {}
    ff.update(fp0_dispersive(q2, par_dict))
    ff.update(fT_pole(q2, par_dict))
    return ff


quantity = 'K->pi form factor'
a = AuxiliaryQuantity(name=quantity, arguments=['q2'])
a.set_description(r'Hadronic form factor for the $K\to\pi$ transition')

iname = 'K->pi dispersive + pole'
i = Implementation(name=iname, quantity=quantity, function=ff_dispersive_pole)
i.set_description(r"Dispersive parametrization (see arXiv:hep-ph/0603202) for "
                  r"$f_+$ and $f_0$ and simple pole for $f_T$.")
コード例 #9
0
ファイル: formfactors.py プロジェクト: peterstangl/flavio
    fp_bar = exp(q2/mpi**2 * (Lp + H))
    ff = {}
    ff['f+'] = fp_0 * fp_bar
    ff['f0'] = fp_0 * f0_bar
    return ff

def fT_pole(q2, par):
    # specific parameters
    fT_0 = par['K->pi fT(0)']
    sT = par['K->pi sT']
    ff = {}
    # (4) of 1108.1021
    ff['fT'] = fT_0 / (1- sT * q2)
    return ff

def ff_dispersive_pole(wc_obj, par_dict, q2):
    ff = {}
    ff.update( fp0_dispersive(q2, par_dict) )
    ff.update( fT_pole(q2, par_dict) )
    return ff

quantity = 'K->pi form factor'
a = AuxiliaryQuantity(name=quantity, arguments=['q2'])
a.set_description(r'Hadronic form factor for the $K\to\pi$ transition')

iname = 'K->pi dispersive + pole'
i = Implementation(name=iname, quantity=quantity,
               function=ff_dispersive_pole)
i.set_description(r"Dispersive parametrization (see arXiv:hep-ph/0603202) for "
                  r"$f_+$ and $f_0$ and simple pole for $f_T$.")
コード例 #10
0
ファイル: btov.py プロジェクト: seanbme123/pythonProject3
def ff_function(function, process, **kwargs):
    return lambda wc_obj, par_dict, q2: function(process, q2, par_dict, **
                                                 kwargs)


for p in processes_H2L + processes_H2H:

    quantity = p + ' form factor'
    a = AuxiliaryQuantity(name=quantity, arguments=['q2'])
    a.set_description('Hadronic form factor for the ' + p + ' transition')

    iname = p + ' BSZ2'
    i = Implementation(name=iname,
                       quantity=quantity,
                       function=ff_function(bsz.ff, p, n=2))
    i.set_description("2-parameter BSZ parametrization (see arXiv:1503.05534)")

    iname = p + ' BSZ3'
    i = Implementation(name=iname,
                       quantity=quantity,
                       function=ff_function(bsz.ff, p, n=3))
    i.set_description("3-parameter BSZ parametrization (see arXiv:1503.05534)")

    iname = p + ' SSE'
    i = Implementation(name=iname,
                       quantity=quantity,
                       function=ff_function(sse.ff, p, n=2))
    i.set_description("2-parameter simplified series expansion")

for p in processes_H2H:
コード例 #11
0
ファイル: lambdab.py プロジェクト: flav-io/flavio
from flavio.physics.bdecays.formfactors.lambdab_12 import sse
from flavio.classes import AuxiliaryQuantity, Implementation
from flavio.config import config

processes = ['Lambdab->Lambda',]

def ff_function(function, process, **kwargs):
    return lambda wc_obj, par_dict, q2: function(process, q2, par_dict, **kwargs)

for p in processes:
    quantity = p + ' form factor'
    a = AuxiliaryQuantity(name=quantity, arguments=['q2'])
    a.set_description('Hadronic form factor for the ' + p + ' transition')

    iname = p + ' SSE2'
    i = Implementation(name=iname, quantity=quantity,
                   function=ff_function(sse.ff, p, n=2))
    i.set_description("2-parameter simplified series expansion")

    iname = p + ' SSE3'
    i = Implementation(name=iname, quantity=quantity,
                   function=ff_function(sse.ff, p, n=2))
    i.set_description("3-parameter simplified series expansion")
コード例 #12
0
ファイル: bpll_subleading.py プロジェクト: flav-io/flavio
# AuxiliaryQuantity & Implementatation: subleading effects at LOW q^2

for had in [('B0','K0'), ('B+','K+'),]:
    process = had[0] + '->' + had[1] + 'll' # e.g. B0->K*0ll
    quantity = process + ' subleading effects at low q2'
    a = AuxiliaryQuantity(name=quantity, arguments=['q2', 'cp_conjugate'])
    a.description = ('Contribution to ' + process + ' helicity amplitudes from'
                    ' subleading hadronic effects (i.e. all effects not included'
                    r'elsewhere) at $q^2$ below the charmonium resonances')

    # Implementation: C7-polynomial
    iname = process + ' deltaC7 polynomial'
    i = Implementation(name=iname, quantity=quantity,
                   function=fct_deltaC7_polynomial(B=had[0], P=had[1]))
    i.set_description(r"Effective shift in the Wilson coefficient $C_7(\mu_b)$"
                      r" as a first-order polynomial in $q^2$.")

    # Implementation: C9-polynomial
    iname = process + ' deltaC9 polynomial'
    i = Implementation(name=iname, quantity=quantity,
                   function=fct_deltaC9_polynomial(B=had[0], P=had[1]))
    i.set_description(r"Effective shift in the Wilson coefficient $C_9(\mu_b)$"
                      r" as a first-order polynomial in $q^2$.")


# AuxiliaryQuantity & Implementatation: subleading effects at HIGH q^2

for had in [('B0','K0'), ('B+','K+'), ]:
    for l in ['e', 'mu', 'tau']:
        process = had[0] + '->' + had[1] + 'll' # e.g. B0->K0ll
        quantity = process + ' subleading effects at high q2'
コード例 #13
0
ファイル: lambdab.py プロジェクト: seanbme123/pythonProject3
from flavio.physics.bdecays.formfactors.lambdab_12 import sse
from flavio.classes import AuxiliaryQuantity, Implementation
from flavio.config import config

processes = [
    'Lambdab->Lambda',
]


def ff_function(function, process, **kwargs):
    return lambda wc_obj, par_dict, q2: function(process, q2, par_dict, **
                                                 kwargs)


for p in processes:
    quantity = p + ' form factor'
    a = AuxiliaryQuantity(name=quantity, arguments=['q2'])
    a.set_description('Hadronic form factor for the ' + p + ' transition')

    iname = p + ' SSE2'
    i = Implementation(name=iname,
                       quantity=quantity,
                       function=ff_function(sse.ff, p, n=2))
    i.set_description("2-parameter simplified series expansion")

    iname = p + ' SSE3'
    i = Implementation(name=iname,
                       quantity=quantity,
                       function=ff_function(sse.ff, p, n=2))
    i.set_description("3-parameter simplified series expansion")
コード例 #14
0
# AuxiliaryQuantity & Implementatation: subleading effects at LOW q^2

for had in [('B0','K0'), ('B+','K+'),]:
    for l in ['e', 'mu', ]:
        process = had[0] + '->' + had[1] + l+l # e.g. B0->K*0mumu
        quantity = process + ' subleading effects at low q2'
        a = AuxiliaryQuantity(name=quantity, arguments=['q2', 'cp_conjugate'])
        a.description = ('Contribution to ' + process + ' helicity amplitudes from'
                        ' subleading hadronic effects (i.e. all effects not included'
                        r'elsewhere) at $q^2$ below the charmonium resonances')

        # Implementation: C7-polynomial
        iname = process + ' deltaC7 polynomial'
        i = Implementation(name=iname, quantity=quantity,
                       function=fct_deltaC7_polynomial(B=had[0], P=had[1], lep=l))
        i.set_description(r"Effective shift in the Wilson coefficient $C_7(\mu_b)$"
                          r" as a first-order polynomial in $q^2$.")

        # Implementation: C9-polynomial
        iname = process + ' deltaC9 polynomial'
        i = Implementation(name=iname, quantity=quantity,
                       function=fct_deltaC9_polynomial(B=had[0], P=had[1], lep=l))
        i.set_description(r"Effective shift in the Wilson coefficient $C_9(\mu_b)$"
                          r" as a first-order polynomial in $q^2$.")


# AuxiliaryQuantity & Implementatation: subleading effects at HIGH q^2

for had in [('B0','K0'), ('B+','K+'), ]:
    for l in ['e', 'mu', 'tau']:
        process = had[0] + '->' + had[1] + l+l # e.g. B0->K0mumu
        quantity = process + ' subleading effects at high q2'