def mlp_net2net(): num_classes = 10 (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train = x_train.reshape(60000, 784) x_train = x_train.astype('float32') x_train /= 255 y_train = y_train.astype('int32') y_train = np.reshape(y_train, (len(y_train), 1)) #y_train = np.random.randint(1, 9, size=(len(y_train),1), dtype='int32') print("shape: ", x_train.shape) #teacher input_tensor1 = Input(batch_shape=[0, 784], dtype="float32") d1 = Dense(512, input_shape=(784, ), activation="relu") d2 = Dense(512, activation="relu") d3 = Dense(num_classes) output = d1(input_tensor1) output = d2(output) output = d3(output) output = Activation("softmax")(output) teacher_model = Model(input_tensor1, output) opt = flexflow.keras.optimizers.SGD(learning_rate=0.01) teacher_model.compile(optimizer=opt) teacher_model.fit(x_train, y_train, epochs=1) d1_kernel, d1_bias = d1.get_weights(teacher_model.ffmodel) d2_kernel, d2_bias = d2.get_weights(teacher_model.ffmodel) d3_kernel, d3_bias = d3.get_weights(teacher_model.ffmodel) # student input_tensor2 = Input(batch_shape=[0, 784], dtype="float32") sd1 = Dense(512, input_shape=(784, ), activation="relu") sd2 = Dense(512, activation="relu") sd3 = Dense(num_classes) output = sd1(input_tensor2) output = sd2(output) output = sd3(output) output = Activation("softmax")(output) student_model = Model(input_tensor2, output) opt = flexflow.keras.optimizers.SGD(learning_rate=0.01) student_model.compile(optimizer=opt) sd1.set_weights(student_model.ffmodel, d1_kernel, d1_bias) sd2.set_weights(student_model.ffmodel, d2_kernel, d2_bias) sd3.set_weights(student_model.ffmodel, d3_kernel, d3_bias) student_model.fit(x_train, y_train, epochs=1)
def cifar_cnn_concat(): num_classes = 10 num_samples = 10000 (x_train, y_train), (x_test, y_test) = cifar10.load_data(num_samples) x_train = x_train.astype('float32') x_train /= 255 #x_train *= 0 #y_train = np.random.randint(1, 9, size=(num_samples,1), dtype='int32') y_train = y_train.astype('int32') print("shape: ", x_train.shape) input_tensor1 = Input(batch_shape=[0, 3, 32, 32], dtype="float32") input_tensor2 = Input(batch_shape=[0, 3, 32, 32], dtype="float32") ot1 = cifar_cnn_sub(input_tensor1, 1) ot2 = cifar_cnn_sub(input_tensor2, 2) ot3 = cifar_cnn_sub(input_tensor2, 3) output_tensor = Concatenate(axis=1)([ot1, ot2, ot3]) output_tensor = MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding="valid")(output_tensor) o1 = Conv2D(filters=64, kernel_size=(3, 3), strides=(1, 1), padding=(1, 1), activation="relu", name="conv2d_0_4")(output_tensor) o2 = Conv2D(filters=64, kernel_size=(3, 3), strides=(1, 1), padding=(1, 1), activation="relu", name="conv2d_1_4")(output_tensor) output_tensor = Concatenate(axis=1)([o1, o2]) output_tensor = Conv2D(filters=64, kernel_size=(3, 3), strides=(1, 1), padding=(1, 1), activation="relu")(output_tensor) output_tensor = MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding="valid")(output_tensor) output_tensor = Flatten()(output_tensor) output_tensor = Dense(512, activation="relu")(output_tensor) output_tensor = Dense(num_classes)(output_tensor) output_tensor = Activation("softmax")(output_tensor) model = Model([input_tensor1, input_tensor2], output_tensor) print(model.summary()) opt = flexflow.keras.optimizers.SGD(learning_rate=0.01) model.compile(optimizer=opt) model.fit([x_train, x_train], y_train, epochs=1)
def mlp(): num_classes = 10 (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train = x_train.reshape(60000, 784) x_train = x_train.astype('float32') x_train /= 255 y_train = y_train.astype('int32') y_train = np.reshape(y_train, (len(y_train), 1)) #y_train = np.random.randint(1, 9, size=(len(y_train),1), dtype='int32') print("shape: ", x_train.shape) input_tensor = Input(batch_shape=[0, 784], dtype="float32") output = Dense(512, input_shape=(784, ), activation="relu")(input_tensor) output2 = Dense(512, activation="relu")(output) output3 = Dense(num_classes)(output2) output4 = Activation("softmax")(output3) model = Model(input_tensor, output4) opt = flexflow.keras.optimizers.SGD(learning_rate=0.01) model.compile(optimizer=opt) model.fit(x_train, y_train, epochs=1)
def cnn_concat(): num_classes = 10 img_rows, img_cols = 28, 28 (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols) x_train = x_train.astype('float32') x_train /= 255 y_train = y_train.astype('int32') y_train = np.reshape(y_train, (len(y_train), 1)) input_tensor = Input(batch_shape=[0, 1, 28, 28], dtype="float32") t1 = Conv2D(filters=32, input_shape=(1, 28, 28), kernel_size=(3, 3), strides=(1, 1), padding=(1, 1), activation="relu")(input_tensor) t2 = Conv2D(filters=32, input_shape=(1, 28, 28), kernel_size=(3, 3), strides=(1, 1), padding=(1, 1), activation="relu")(input_tensor) output = Concatenate(axis=1)([t1, t2]) output = Conv2D(filters=64, kernel_size=(3, 3), strides=(1, 1), padding=(1, 1), activation="relu")(output) output = MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding="valid")(output) output = Flatten()(output) output = Dense(128, activation="relu")(output) output = Dense(num_classes)(output) output = Activation("softmax")(output) model = Model(input_tensor, output) print(model.summary()) opt = flexflow.keras.optimizers.SGD(learning_rate=0.01) model.compile(optimizer=opt) model.fit(x_train, y_train, epochs=1)
def cifar_cnn_net2net(): num_classes = 10 num_samples = 10000 (x_train, y_train), (x_test, y_test) = cifar10.load_data(num_samples) x_train = x_train.astype('float32') x_train /= 255 #x_train *= 0 #y_train = np.random.randint(1, 9, size=(num_samples,1), dtype='int32') y_train = y_train.astype('int32') print("shape: ", x_train.shape) #teacher input_tensor1 = Input(batch_shape=[0, 3, 32, 32], dtype="float32") c1 = Conv2D(filters=32, input_shape=(3, 32, 32), kernel_size=(3, 3), strides=(1, 1), padding=(1, 1), activation="relu") c2 = Conv2D(filters=32, kernel_size=(3, 3), strides=(1, 1), padding=(1, 1), activation="relu") c3 = Conv2D(filters=64, kernel_size=(3, 3), strides=(1, 1), padding=(1, 1), activation="relu") c4 = Conv2D(filters=64, kernel_size=(3, 3), strides=(1, 1), padding=(1, 1), activation="relu") d1 = Dense(512, activation="relu") d2 = Dense(num_classes) output_tensor = c1(input_tensor1) output_tensor = c2(output_tensor) output_tensor = MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding="valid")(output_tensor) output_tensor = c3(output_tensor) output_tensor = c4(output_tensor) output_tensor = MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding="valid")(output_tensor) output_tensor = Flatten()(output_tensor) output_tensor = d1(output_tensor) output_tensor = d2(output_tensor) output_tensor = Activation("softmax")(output_tensor) teacher_model = Model(input_tensor1, output_tensor) print(teacher_model.summary()) opt = flexflow.keras.optimizers.SGD(learning_rate=0.01) teacher_model.compile(optimizer=opt) teacher_model.fit(x_train, y_train, epochs=1) c1_kernel, c1_bias = c1.get_weights(teacher_model.ffmodel) c2_kernel, c2_bias = c2.get_weights(teacher_model.ffmodel) c3_kernel, c3_bias = c3.get_weights(teacher_model.ffmodel) c4_kernel, c4_bias = c4.get_weights(teacher_model.ffmodel) d1_kernel, d1_bias = d1.get_weights(teacher_model.ffmodel) d2_kernel, d2_bias = d2.get_weights(teacher_model.ffmodel) #d2_kernel *= 0 c2_kernel_new = np.concatenate((c2_kernel, c2_kernel), axis=1) print(c2_kernel.shape, c2_kernel_new.shape, c2_bias.shape) #student model input_tensor2 = Input(batch_shape=[0, 3, 32, 32], dtype="float32") sc1_1 = Conv2D(filters=32, input_shape=(3, 32, 32), kernel_size=(3, 3), strides=(1, 1), padding=(1, 1), activation="relu") sc1_2 = Conv2D(filters=32, input_shape=(3, 32, 32), kernel_size=(3, 3), strides=(1, 1), padding=(1, 1), activation="relu") sc2 = Conv2D(filters=32, kernel_size=(3, 3), strides=(1, 1), padding=(1, 1), activation="relu") sc3 = Conv2D(filters=64, kernel_size=(3, 3), strides=(1, 1), padding=(1, 1), activation="relu") sc4 = Conv2D(filters=64, kernel_size=(3, 3), strides=(1, 1), padding=(1, 1), activation="relu") sd1 = Dense(512, activation="relu") sd2 = Dense(num_classes) t1 = sc1_1(input_tensor2) t2 = sc1_2(input_tensor2) output_tensor = Concatenate(axis=1)([t1, t2]) output_tensor = sc2(output_tensor) output_tensor = MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding="valid")(output_tensor) output_tensor = sc3(output_tensor) output_tensor = sc4(output_tensor) output_tensor = MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding="valid")(output_tensor) output_tensor = Flatten()(output_tensor) output_tensor = sd1(output_tensor) output_tensor = sd2(output_tensor) output_tensor = Activation("softmax")(output_tensor) student_model = Model(input_tensor2, output_tensor) print(student_model.summary()) opt = flexflow.keras.optimizers.SGD(learning_rate=0.01) student_model.compile(optimizer=opt) sc1_1.set_weights(student_model.ffmodel, c1_kernel, c1_bias) sc1_2.set_weights(student_model.ffmodel, c1_kernel, c1_bias) sc2.set_weights(student_model.ffmodel, c2_kernel_new, c2_bias) sc3.set_weights(student_model.ffmodel, c3_kernel, c3_bias) sc4.set_weights(student_model.ffmodel, c4_kernel, c4_bias) sd1.set_weights(student_model.ffmodel, d1_kernel, d1_bias) sd2.set_weights(student_model.ffmodel, d2_kernel, d2_bias) student_model.fit(x_train, y_train, epochs=1)
def cifar_alexnet(): num_samples = 10000 (x_train, y_train), (x_test, y_test) = cifar10.load_data(num_samples) full_input_np = np.zeros((num_samples, 3, 229, 229), dtype=np.float32) for i in range(0, num_samples): image = x_train[i, :, :, :] image = image.transpose(1, 2, 0) pil_image = Image.fromarray(image) pil_image = pil_image.resize((229, 229), Image.NEAREST) image = np.array(pil_image, dtype=np.float32) image = image.transpose(2, 0, 1) full_input_np[i, :, :, :] = image if (i == 0): print(image) full_input_np /= 255 y_train = y_train.astype('int32') full_label_np = y_train input_tensor = Input(batch_shape=[0, 3, 229, 229], dtype="float32") output = Conv2D(filters=64, input_shape=(3, 229, 229), kernel_size=(11, 11), strides=(4, 4), padding=(2, 2), activation="relu")(input_tensor) output = MaxPooling2D(pool_size=(3, 3), strides=(2, 2), padding="valid")(output) output = Conv2D(filters=192, kernel_size=(5, 5), strides=(1, 1), padding=(2, 2), activation="relu")(output) output = MaxPooling2D(pool_size=(3, 3), strides=(2, 2), padding="valid")(output) output = Conv2D(filters=384, kernel_size=(3, 3), strides=(1, 1), padding=(1, 1), activation="relu")(output) output = Conv2D(filters=256, kernel_size=(3, 3), strides=(1, 1), padding=(1, 1), activation="relu")(output) output = Conv2D(filters=256, kernel_size=(3, 3), strides=(1, 1), padding=(1, 1), activation="relu")(output) output = MaxPooling2D(pool_size=(3, 3), strides=(2, 2), padding="valid")(output) output = Flatten()(output) output = Dense(4096, activation="relu")(output) output = Dense(4096, activation="relu")(output) output = Dense(10)(output) output = Activation("softmax")(output) model = Model(input_tensor, output) print(model.summary()) opt = flexflow.keras.optimizers.SGD(learning_rate=0.001) model.compile(optimizer=opt) model.fit(full_input_np, full_label_np, epochs=1)