コード例 #1
0
def assemble_du(nz, nz_max, dim, npm, alphas, psi, vecsstar):
    # Execute the sum defining dU, taking pre-computed factors into account
    du = numba_zeros((npm, dim, dim))

    for n2 in range(-nz_max, nz_max + 1):
        for i1 in range(0, dim):
            for i2 in range(0, dim):
                product = numba_outer(psi[i1], vecsstar[i2, n_to_i(-n2, nz)])
                for n1 in range(-nz_max, nz_max + 1):
                    idn = n_to_i(n1 - n2, 2 * nz)
                    for c in xrange(0, npm):
                        du[c] += alphas[c, idn, i1, i2] * product

    return du
コード例 #2
0
ファイル: evolution.py プロジェクト: sirmarcel/floq
def numba_assemble_k(hf, dim, k_dim, nz, nc, omega):
    hf_max = (nc-1)/2
    k = numba_zeros((k_dim, k_dim))

    # Assemble K by placing each component of Hf in turn, which
    # for a fixed Fourier index lie on diagonals, with 0 on the
    # main diagonal, positive numbers on the right and negative on the left
    #
    # The first row is therefore essentially Hf(0) Hf(-1) ... Hf(-hf_max) 0 0 0 ...
    # The last row is then ... 0 0 0 Hf(+hf_max) ... Hf(0)
    # Note that the main diagonal acquires a factor of omega*identity*(row/column number)

    for n in range(-hf_max, hf_max+1):
        start_row = max(0, n)  # if n < 0, start at row 0
        start_col = max(0, -n)  # if n > 0, start at col 0

        stop_row = min((nz-1)+n, nz-1)
        stop_col = min((nz-1)-n, nz-1)

        row = start_row
        col = start_col

        current_component = hf[n_to_i(n, nc)]

        while row <= stop_row and col <= stop_col:
            if n == 0:
                block = current_component + np.identity(dim)*omega*i_to_n(row, nz)
                bm.set_block_in_matrix(block, k, dim, nz, row, col)
            else:
                bm.set_block_in_matrix(current_component, k, dim, nz, row, col)

            row += 1
            col += 1

    return k
コード例 #3
0
ファイル: evolution.py プロジェクト: sirmarcel/floq
def calculate_factors(dk, nz, nz_max, dim, npm, vals, vecs, vecsstar, omega, t):
    # Factors in the sum for dU that only depend on dn=n1-n2, and therefore
    # can be computed more efficiently outside the "full" loop
    factors = np.empty([npm, 2*nz+1, dim, dim], dtype=np.complex128)

    for dn in xrange(-nz_max*2, 2*nz_max+1):
        idn = n_to_i(dn, 2*nz)
        for i1 in xrange(0, dim):
            for i2 in xrange(0, dim):
                v1 = np.roll(vecsstar[i1], dn, axis=0)  # not supported by numba!
                for c in xrange(0, npm):
                    factors[c, idn, i1, i2] = (integral_factors(vals[i1], vals[i2], dn, omega, t) *
                                               expectation_value(dk[c], v1, vecs[i2]))

    return factors
コード例 #4
0
 def test_end(self):
     self.assertEqual(h.n_to_i(40, 81), 80)
コード例 #5
0
 def test_start(self):
     self.assertEqual(h.n_to_i(-40, 81), 0)
コード例 #6
0
 def test_too_small_a_lot(self):
     self.assertEqual(h.n_to_i(-6 - 14, 7), h.n_to_i(1, 7))
コード例 #7
0
 def test_too_small_a_bit(self):
     self.assertEqual(h.n_to_i(-6, 7), h.n_to_i(1, 7))
コード例 #8
0
 def test_too_big_a_lot(self):
     self.assertEqual(h.n_to_i(5 + 7, 7), h.n_to_i(-2, 7))
コード例 #9
0
 def test_in_between(self):
     self.assertEqual(h.n_to_i(-3, 81), 37)
コード例 #10
0
 def test_middle(self):
     self.assertEqual(h.n_to_i(0, 81), 40)