コード例 #1
0
def test_resample_schedule_dates() -> None:
    """
    This function checks if the observation files (complete, training, and test) in ERT and YAML version are equal.

    Returns:
        Nothing
    """
    # Load production
    headers = [
        "date",
        "WOPR",
        "WGPR",
        "WWPR",
        "WOPT",
        "WGPT",
        "WWPT",
        "WBHP",
        "WTHP",
        "WGIR",
        "WWIR",
        "WGIT",
        "WWIT",
        "WSTAT",
        "WELL_NAME",
        "PHASE",
        "TYPE",
        "date",
    ]
    df_production_data: pd.DataFrame = pd.read_csv(_PRODUCTION_DATA_FILE_NAME,
                                                   usecols=headers)

    df_production_data["date"] = pd.to_datetime(df_production_data["date"])

    start_date = date(2005, 10, 1)

    schedule = _create_schedule_from_data(df_production_data, start_date)

    days_original = [
        (d - start_date).days
        for d in resample_schedule_dates(schedule, resampling=None)
    ]
    days_monthly = [(d - start_date).days
                    for d in resample_schedule_dates(schedule, resampling="M")]
    days_quarterly = [
        (d - start_date).days
        for d in resample_schedule_dates(schedule, resampling="Q")
    ]
    days_yearly = [(d - start_date).days
                   for d in resample_schedule_dates(schedule, resampling="A")]

    assert (np.allclose(days_original[0:3], [31, 61, 62])
            and np.allclose(days_monthly[0:3], [31, 61, 92])
            and np.allclose(days_quarterly[0:3], [92, 182, 273])
            and np.allclose(days_yearly[0:3], [92]))
コード例 #2
0
def test_check_obsfiles_ert_yaml() -> None:
    """
    This function checks if the observation files (complete, training, and test) in ERT and YAML version are equal.

    Returns:
        Nothing
    """

    # pylint: disable-msg=too-many-locals
    # pylint: disable-msg=too-many-statements
    # pylint: disable=maybe-no-member
    config = collections.namedtuple("configuration", "flownet")
    config.flownet = collections.namedtuple("flownet", "data_source")
    config.flownet.data_source = collections.namedtuple(
        "data_source", "simulation")
    config.flownet.data_source.simulation = collections.namedtuple(
        "simulation", "vectors")
    config.flownet.data_source.simulation.vectors = collections.namedtuple(
        "vectors", "WTHP")
    config.flownet.data_source.simulation.vectors.WOPR = collections.namedtuple(
        "WOPR", "min_error")
    config.flownet.data_source.simulation.vectors.WOPR.min_error = _MIN_ERROR
    config.flownet.data_source.simulation.vectors.WOPR.rel_error = _REL_ERROR

    config.flownet.data_source.simulation.vectors.WGPR = collections.namedtuple(
        "WGPR", "min_error")
    config.flownet.data_source.simulation.vectors.WGPR.min_error = _MIN_ERROR
    config.flownet.data_source.simulation.vectors.WGPR.rel_error = _REL_ERROR

    config.flownet.data_source.simulation.vectors.WWPR = collections.namedtuple(
        "WWPR", "min_error")
    config.flownet.data_source.simulation.vectors.WWPR.min_error = _MIN_ERROR
    config.flownet.data_source.simulation.vectors.WWPR.rel_error = _REL_ERROR

    config.flownet.data_source.simulation.vectors.WOPT = collections.namedtuple(
        "WOPT", "min_error")
    config.flownet.data_source.simulation.vectors.WOPT.min_error = _MIN_ERROR
    config.flownet.data_source.simulation.vectors.WOPT.rel_error = _REL_ERROR

    config.flownet.data_source.simulation.vectors.WGPT = collections.namedtuple(
        "WGPT", "min_error")
    config.flownet.data_source.simulation.vectors.WGPT.min_error = _MIN_ERROR
    config.flownet.data_source.simulation.vectors.WGPT.rel_error = _REL_ERROR

    config.flownet.data_source.simulation.vectors.WWPT = collections.namedtuple(
        "WWPT", "min_error")
    config.flownet.data_source.simulation.vectors.WWPT.min_error = _MIN_ERROR
    config.flownet.data_source.simulation.vectors.WWPT.rel_error = _REL_ERROR

    config.flownet.data_source.simulation.vectors.WBHP = collections.namedtuple(
        "WBHP", "min_error")
    config.flownet.data_source.simulation.vectors.WBHP.min_error = _MIN_ERROR
    config.flownet.data_source.simulation.vectors.WBHP.rel_error = _REL_ERROR

    config.flownet.data_source.simulation.vectors.WTHP = collections.namedtuple(
        "WTHP", "min_error")
    config.flownet.data_source.simulation.vectors.WTHP.min_error = _MIN_ERROR
    config.flownet.data_source.simulation.vectors.WTHP.rel_error = _REL_ERROR

    config.flownet.data_source.simulation.vectors.WGIR = collections.namedtuple(
        "WGIR", "min_error")
    config.flownet.data_source.simulation.vectors.WGIR.min_error = _MIN_ERROR
    config.flownet.data_source.simulation.vectors.WGIR.rel_error = _REL_ERROR

    config.flownet.data_source.simulation.vectors.WWIR = collections.namedtuple(
        "WWIR", "min_error")
    config.flownet.data_source.simulation.vectors.WWIR.min_error = _MIN_ERROR
    config.flownet.data_source.simulation.vectors.WWIR.rel_error = _REL_ERROR

    config.flownet.data_source.simulation.vectors.WGIT = collections.namedtuple(
        "WGIT", "min_error")
    config.flownet.data_source.simulation.vectors.WGIT.min_error = _MIN_ERROR
    config.flownet.data_source.simulation.vectors.WGIT.rel_error = _REL_ERROR

    config.flownet.data_source.simulation.vectors.WWIT = collections.namedtuple(
        "WWIT", "min_error")
    config.flownet.data_source.simulation.vectors.WWIT.min_error = _MIN_ERROR
    config.flownet.data_source.simulation.vectors.WWIT.rel_error = _REL_ERROR

    config.flownet.data_source.simulation.vectors.WSPR = collections.namedtuple(
        "WSPR", "min_error")
    config.flownet.data_source.simulation.vectors.WSPR.min_error = _MIN_ERROR
    config.flownet.data_source.simulation.vectors.WSPR.rel_error = _REL_ERROR

    config.flownet.data_source.simulation.vectors.WSPT = collections.namedtuple(
        "WSPT", "min_error")
    config.flownet.data_source.simulation.vectors.WSPT.min_error = _MIN_ERROR
    config.flownet.data_source.simulation.vectors.WSPT.rel_error = _REL_ERROR

    config.flownet.data_source.simulation.vectors.WSIR = collections.namedtuple(
        "WSIR", "min_error")
    config.flownet.data_source.simulation.vectors.WSIR.min_error = _MIN_ERROR
    config.flownet.data_source.simulation.vectors.WSIR.rel_error = _REL_ERROR

    config.flownet.data_source.simulation.vectors.WSIT = collections.namedtuple(
        "WSIT", "min_error")
    config.flownet.data_source.simulation.vectors.WSIT.min_error = _MIN_ERROR
    config.flownet.data_source.simulation.vectors.WSIT.rel_error = _REL_ERROR

    config.flownet.data_source.resampling = _RESAMPLING

    # Load production
    headers = [
        "date",
        "WOPR",
        "WGPR",
        "WWPR",
        "WOPT",
        "WGPT",
        "WWPT",
        "WBHP",
        "WTHP",
        "WGIR",
        "WWIR",
        "WGIT",
        "WWIT",
        "WSTAT",
        "WELL_NAME",
        "PHASE",
        "TYPE",
        "date",
    ]
    df_production_data: pd.DataFrame = pd.read_csv(_PRODUCTION_DATA_FILE_NAME,
                                                   usecols=headers)

    df_production_data["date"] = pd.to_datetime(df_production_data["date"])

    start_date = date(2005, 10, 1)

    schedule = _create_schedule_from_data(df_production_data, start_date)

    # Testing with resampling
    create_observation_file(
        schedule,
        _OBSERVATION_FILES / "observations.ertobs",
        config,
        _TRAINING_SET_FRACTION,
    )

    create_observation_file(
        schedule,
        _OBSERVATION_FILES / "observations.yamlobs",
        config,
        _TRAINING_SET_FRACTION,
        yaml=True,
    )

    dates_resampled = resample_schedule_dates(
        schedule, config.flownet.data_source.resampling)

    num_dates = len(dates_resampled)
    num_training_dates = round(num_dates * _TRAINING_SET_FRACTION)

    export_settings = [
        ["_complete", 0, num_dates],
        ["_training", 0, num_training_dates],
        ["_test", num_training_dates + 1, num_dates],
    ]

    file_root = pathlib.Path(_OBSERVATION_FILES / "observations")
    for setting in export_settings:
        ert_obs_file_name = f"{file_root}{setting[0]}.ertobs"
        yaml_obs_file_name = f"{file_root}{setting[0]}.yamlobs"
        # Comparing the complete observation data
        # Reading ERT file
        ert_obs = _read_ert_obs(ert_obs_file_name)
        # Reading YAML file
        parsed_yaml_file = _read_yaml_obs(yaml_obs_file_name)
        # Comparing observation data
        compare(ert_obs, parsed_yaml_file)

    # Testing without resampling
    config.flownet.data_source.resampling = None

    create_observation_file(
        schedule,
        _OBSERVATION_FILES / "observations.ertobs",
        config,
        _TRAINING_SET_FRACTION,
    )

    create_observation_file(
        schedule,
        _OBSERVATION_FILES / "observations.yamlobs",
        config,
        _TRAINING_SET_FRACTION,
        yaml=True,
    )

    dates_original = resample_schedule_dates(
        schedule, config.flownet.data_source.resampling)

    num_dates = len(dates_original)
    num_training_dates = round(num_dates * _TRAINING_SET_FRACTION)

    export_settings = [
        ["_complete", 0, num_dates],
        ["_training", 0, num_training_dates],
        ["_test", num_training_dates + 1, num_dates],
    ]

    file_root = pathlib.Path(_OBSERVATION_FILES / "observations")
    for setting in export_settings:
        ert_obs_file_name = f"{file_root}{setting[0]}.ertobs"
        yaml_obs_file_name = f"{file_root}{setting[0]}.yamlobs"
        # Comparing the complete observation data
        # Reading ERT file
        ert_obs = _read_ert_obs(ert_obs_file_name)
        # Reading YAML file
        parsed_yaml_file = _read_yaml_obs(yaml_obs_file_name)
        print(ert_obs)
        print(parsed_yaml_file)
        # Comparing observation data
        compare(ert_obs, parsed_yaml_file)