コード例 #1
0
ファイル: test_piv.py プロジェクト: hbcbh1999/fluidimage
    def setUpClass(cls):
        path_images = path_image_samples / "Oseen/Images"
        series = SeriesOfArrays(str(path_images / "Oseen*"), "i+1:i+3")
        cls.path_tmp = path_images.parent / "tmp_test_work_piv"

        if not cls.path_tmp.exists():
            cls.path_tmp.mkdir()

        cls.serie = series.get_serie_from_index(0)
コード例 #2
0
ファイル: base_trio.py プロジェクト: hbcbh1999/fluidimage
    def _make_partition(self, serie_arrays, n):
        """
        Partition a SerieOfArrayFromFile into n SeriesOfArray
        :param serie_arrays: A SerieOfArrayFromFile
        :type SerieOfArrayFromFile
        :param n: The number of slices
        :type int
        :return:
        """
        print("nb process = " + str(n))
        ind_start = self.params.series.ind_start
        ind_stop = self.params.series.ind_stop
        ind_step = self.params.series.ind_step

        nb_image = ind_stop - ind_start + 1
        cut = int(nb_image / n)
        rest = nb_image % n
        for i in range(n):
            if rest > 0:
                plus = 1
            else:
                plus = 0
            self.series.append(
                SeriesOfArrays(
                    serie_arrays,
                    self.params.series.strcouple,
                    ind_start=ind_start,
                    ind_stop=ind_start + cut + plus,
                    ind_step=ind_step,
                ))
            ind_start = ind_start + cut + plus
            rest -= 1
コード例 #3
0
from fluidimage import SeriesOfArrays
from fluidimage.works.piv import WorkPIV

params = WorkPIV.create_default_params()

params.multipass.number = 2
params.multipass.use_tps = True

params.piv0.shape_crop_im0 = 32
params.piv0.displacement_max = 5
params.fix.correl_min = 0.2
params.fix.threshold_diff_neighbour = 8

params.mask.strcrop = '30:250, 100:'

work = WorkPIV(params=params)

path = '../../image_samples/Oseen/Images'
# path = '../../image_samples/Karman/Images'
series = SeriesOfArrays(path, 'i+1:i+3')
serie = series.get_serie_from_index(0)

piv = work.calcul(serie)

# piv.display(show_interp=True, scale=0.3, show_error=True)
piv.display(show_interp=False, scale=1, show_error=True)

# result.save()
コード例 #4
0
from fluidimage import SeriesOfArrays
from fluidimage.works.piv import WorkPIV

from path_images import get_path

path = os.path.join(get_path('2005C'), 'c*.bmp')

params = WorkPIV.create_default_params()

params.piv0.shape_crop_im0 = 64
params.piv0.grid.overlap = 0.5

params.multipass.number = 3
params.multipass.use_tps = False

params.fix.displacement_max = 3
params.fix.correl_min = 0.1
params.fix.threshold_diff_neighbour = 3

work = WorkPIV(params=params)

series = SeriesOfArrays(path, 'i, 0:2')
serie = series.get_serie_from_index(50)

t0 = time()
piv = work.calcul(serie)
t1 = time()
print('Work done in {:.3f} s.'.format(t1 - t0))

piv.display(show_interp=False, scale=0.1, show_error=True)
コード例 #5
0
from fluidimage import SeriesOfArrays
from fluidimage.works.piv import WorkPIV

params = WorkPIV.create_default_params()

# for a very short computation
params.piv0.shape_crop_im0 = 32
params.piv0.grid.overlap = 0.5

# params.piv0.method_subpix = 'centroid'
# params.piv0.method_correl = 'theano'

params.multipass.number = 2
params.multipass.use_tps = 'last'
params.multipass.coeff_zoom = [2]

piv = WorkPIV(params=params)

series = SeriesOfArrays('../../image_samples/Oseen/Images', 'i+1:i+3')
serie = series.get_serie_from_index(0)

cProfile.runctx('result = piv.calcul(serie)', globals(), locals(),
                'profile.pstats')

s = pstats.Stats('profile.pstats')
s.strip_dirs().sort_stats('time').print_stats(10)

print('with gprof2dot and graphviz (command dot):\n'
      'gprof2dot -f pstats profile.pstats | dot -Tpng -o profile.png')
コード例 #6
0
ファイル: piv.py プロジェクト: hbcbh1999/fluidimage
class TopologyPIV(TopologyBase):
    """Topology for PIV computation.

    The most useful methods for the user (in particular :func:`compute`) are
    defined in the base class :class:`fluidimage.topologies.base.TopologyBase`.

    Parameters
    ----------

    params : None

      A ParamContainer (created with the class method
      :func:`create_default_params`) containing the parameters for the
      computation.

    logging_level : str, {'warning', 'info', 'debug', ...}

      Logging level.

    nb_max_workers : None, int

      Maximum numbers of "workers". If None, a number is estimated from the
      number of cores detected. If there are memory errors, you can try to
      decrease the number of workers.

    """
    @classmethod
    def create_default_params(cls):
        """Class method returning the default parameters.

        Typical usage::

          params = TopologyPIV.create_default_params()
          # modify parameters here
          ...

          topo = TopologyPIV(params)

        """
        params = ParamContainer(tag="params")

        params._set_child(
            "series",
            attribs={
                "path": "",
                "strcouple": "i:i+2",
                "ind_start": 0,
                "ind_stop": None,
                "ind_step": 1,
            },
        )

        params.series._set_doc("""
Parameters indicating the input series of images.

path : str, {''}

    String indicating the input images (can be a full path towards an image
    file or a string given to `glob`).

strcouple : 'i:i+2'

    String indicating as a Python slicing how couples of images are formed.
    There is one couple per value of `i`. The values of `i` are set with the
    other parameters `ind_start`, `ind_step` and `ind_stop` approximately with
    the function range (`range(ind_start, ind_stop, ind_step)`).

    Python slicing is a very powerful notation to define subset from a
    (possibly multidimensional) set of images. For a user, an alternative is to
    understand how Python slicing works. See for example this page:
    http://stackoverflow.com/questions/509211/explain-pythons-slice-notation.

    Another possibility is to follow simple examples:

    For single-frame images (im0, im1, im2, im3, ...), we keep the default
    value 'i:i+2' to form the couples (im0, im1), (im1, im2), ...

    To see what it gives, one can use IPython and range:

    >>> i = 0
    >>> list(range(10))[i:i+2]
    [0, 1]

    >>> list(range(10))[i:i+4:2]
    [0, 2]

    We see that we can also use the value 'i:i+4:2' to form the couples (im0,
    im2), (im1, im3), ...

    For double-frame images (im1a, im1b, im2a, im2b, ...) you can write

    >>> params.series.strcouple = 'i, 0:2'

    In this case, the first couple will be (im1a, im1b).

    To get the first couple (im1a, im1a), we would have to write

    >>> params.series.strcouple = 'i:i+2, 0'

ind_start : int, {0}

ind_step : int, {1}

int_stop : None

""")

        params._set_child("saving",
                          attribs={
                              "path": None,
                              "how": "ask",
                              "postfix": "piv"
                          })

        params.saving._set_doc("""Saving of the results.

path : None or str

    Path of the directory where the data will be saved. If None, the path is
    obtained from the input path and the parameter `postfix`.

how : str {'ask'}

    'ask', 'new_dir', 'complete' or 'recompute'.

postfix : str

    Postfix from which the output file is computed.
""")

        WorkPIV._complete_params_with_default(params)

        params._set_internal_attr(
            "_value_text",
            json.dumps({
                "program": "fluidimage",
                "module": "fluidimage.topologies.piv",
                "class": "TopologyPIV",
            }),
        )

        params._set_child("preproc")
        image2image.complete_im2im_params_with_default(params.preproc)

        return params

    def __init__(self, params, logging_level="info", nb_max_workers=None):

        self.params = params

        self.series = SeriesOfArrays(
            params.series.path,
            params.series.strcouple,
            ind_start=params.series.ind_start,
            ind_stop=params.series.ind_stop,
            ind_step=params.series.ind_step,
        )

        path_dir = self.series.serie.path_dir
        path_dir_result, self.how_saving = prepare_path_dir_result(
            path_dir, params.saving.path, params.saving.postfix,
            params.saving.how)

        super().__init__(
            path_dir_result=path_dir_result,
            logging_level=logging_level,
            nb_max_workers=nb_max_workers,
        )

        queue_couples_of_names = self.add_queue("couples of names")
        queue_paths = self.add_queue("paths")
        queue_arrays = queue_arrays1 = self.add_queue("arrays")
        queue_couples_of_arrays = self.add_queue("couples of arrays")
        queue_piv = self.add_queue("piv")

        if params.preproc.im2im is not None:
            queue_arrays1 = self.add_queue("arrays1")

        self.add_work(
            "fill (couples of names, paths)",
            func_or_cls=self.fill_couples_of_names_and_paths,
            output_queue=(queue_couples_of_names, queue_paths),
            kind=("global", "one shot"),
        )
        self.add_work(
            "read array",
            func_or_cls=imread,
            input_queue=queue_paths,
            output_queue=queue_arrays,
            kind="io",
        )

        if params.preproc.im2im is not None:
            im2im_func = image2image.TopologyImage2Image.init_im2im(
                self, params.preproc)

            self.add_work(
                "image2image",
                func_or_cls=im2im_func,
                input_queue=queue_arrays,
                output_queue=queue_arrays1,
            )

        self.add_work(
            "make couples of arrays",
            func_or_cls=self.make_couples,
            params_cls=None,
            input_queue=(queue_couples_of_names, queue_arrays),
            output_queue=queue_couples_of_arrays,
            kind="global",
        )

        self.work_piv = WorkPIV(self.params)

        self.add_work(
            "compute piv",
            func_or_cls=self.work_piv.calcul,
            params_cls=params,
            input_queue=queue_couples_of_arrays,
            output_queue=queue_piv,
        )

        self.add_work(
            "save piv",
            func_or_cls=self.save_piv_object,
            input_queue=queue_piv,
            kind="io",
        )
        self.results = []

    def save_piv_object(self, obj):
        """Save a PIV object"""
        ret = obj.save(self.path_dir_result)
        self.results.append(ret)

    def fill_couples_of_names_and_paths(self, input_queue, output_queues):
        """Fill the two first queues"""
        assert input_queue is None
        queue_couples_of_names = output_queues[0]
        queue_paths = output_queues[1]

        series = self.series
        if not series:
            logger.warning("add 0 couple. No PIV to compute.")
            return
        if self.how_saving == "complete":
            index_series = []
            for ind_serie, serie in self.series.items():
                name_piv = get_name_piv(serie, prefix="piv")
                if not (self.path_dir_result / name_piv).exists():
                    index_series.append(ind_serie)

            if not index_series:
                logger.warning(
                    'topology in mode "complete" and work already done.')
                return

            series.set_index_series(index_series)

            if logger.isEnabledFor(DEBUG):
                logger.debug(
                    repr([serie.get_name_arrays() for serie in series]))

        nb_series = len(series)
        logger.info(f"Add {nb_series} PIV fields to compute.")

        for iserie, serie in enumerate(series):
            if iserie > 1:
                break
            logger.info("Files of serie {}: {}".format(
                iserie, serie.get_name_arrays()))

        for ind_serie, serie in series.items():
            queue_couples_of_names[ind_serie] = serie.get_name_arrays()
            for name, path in serie.get_name_path_arrays():
                queue_paths[name] = path

    def make_couples(self, input_queues, output_queue):
        """Make the couples of arrays"""
        queue_couples_of_names = input_queues[0]
        queue_arrays = input_queues[1]

        try:
            params_mask = self.params.mask
        except AttributeError:
            params_mask = None
        # for each name couple
        for key, couple in tuple(queue_couples_of_names.items()):
            # if correspondant arrays are available, make an array couple
            if (couple[0] in queue_arrays.keys()
                    and couple[1] in queue_arrays.keys()):
                array1 = queue_arrays[couple[0]]
                array2 = queue_arrays[couple[1]]
                serie = copy.copy(self.series.get_serie_from_index(key))

                # logger.debug(
                #     f"create couple {key}: {couple}, ({array1}, {array2})"
                # )
                array_couple = ArrayCouple(
                    names=(couple[0], couple[1]),
                    arrays=(array1, array2),
                    params_mask=params_mask,
                    serie=serie,
                )
                output_queue[key] = array_couple
                del queue_couples_of_names[key]
                # remove the image_array if it not will be used anymore
                if not is_name_in_queue(couple[0], queue_couples_of_names):
                    del queue_arrays[couple[0]]
                if not is_name_in_queue(couple[1], queue_couples_of_names):
                    del queue_arrays[couple[1]]

    def make_text_at_exit(self, time_since_start):
        """Make a text printed at exit"""

        txt = f"Stop compute after t = {time_since_start:.2f} s"
        try:
            nb_results = len(self.results)
        except AttributeError:
            nb_results = None
        if nb_results is not None and nb_results > 0:
            txt += f" ({nb_results} piv fields, {time_since_start / nb_results:.2f} s/field)."
        else:
            txt += "."

        txt += "\npath results:\n" + str(self.path_dir_result)

        return txt
コード例 #7
0
ファイル: piv.py プロジェクト: hbcbh1999/fluidimage
    def __init__(self, params, logging_level="info", nb_max_workers=None):

        self.params = params

        self.series = SeriesOfArrays(
            params.series.path,
            params.series.strcouple,
            ind_start=params.series.ind_start,
            ind_stop=params.series.ind_stop,
            ind_step=params.series.ind_step,
        )

        path_dir = self.series.serie.path_dir
        path_dir_result, self.how_saving = prepare_path_dir_result(
            path_dir, params.saving.path, params.saving.postfix,
            params.saving.how)

        super().__init__(
            path_dir_result=path_dir_result,
            logging_level=logging_level,
            nb_max_workers=nb_max_workers,
        )

        queue_couples_of_names = self.add_queue("couples of names")
        queue_paths = self.add_queue("paths")
        queue_arrays = queue_arrays1 = self.add_queue("arrays")
        queue_couples_of_arrays = self.add_queue("couples of arrays")
        queue_piv = self.add_queue("piv")

        if params.preproc.im2im is not None:
            queue_arrays1 = self.add_queue("arrays1")

        self.add_work(
            "fill (couples of names, paths)",
            func_or_cls=self.fill_couples_of_names_and_paths,
            output_queue=(queue_couples_of_names, queue_paths),
            kind=("global", "one shot"),
        )
        self.add_work(
            "read array",
            func_or_cls=imread,
            input_queue=queue_paths,
            output_queue=queue_arrays,
            kind="io",
        )

        if params.preproc.im2im is not None:
            im2im_func = image2image.TopologyImage2Image.init_im2im(
                self, params.preproc)

            self.add_work(
                "image2image",
                func_or_cls=im2im_func,
                input_queue=queue_arrays,
                output_queue=queue_arrays1,
            )

        self.add_work(
            "make couples of arrays",
            func_or_cls=self.make_couples,
            params_cls=None,
            input_queue=(queue_couples_of_names, queue_arrays),
            output_queue=queue_couples_of_arrays,
            kind="global",
        )

        self.work_piv = WorkPIV(self.params)

        self.add_work(
            "compute piv",
            func_or_cls=self.work_piv.calcul,
            params_cls=params,
            input_queue=queue_couples_of_arrays,
            output_queue=queue_piv,
        )

        self.add_work(
            "save piv",
            func_or_cls=self.save_piv_object,
            input_queue=queue_piv,
            kind="io",
        )
        self.results = []
コード例 #8
0
    def __init__(self, params, logging_level="info", nb_max_workers=None):

        self.params = params

        if params.surface_tracking is None:
            raise ValueError("params.surface_tracking has to be set.")

        self.serie = SerieOfArraysFromFiles(params.images.path,
                                            params.images.str_slice)
        self.series = SeriesOfArrays(
            params.images.path,
            "i:i+" + str(self.serie.get_index_slices()[0][2] + 1) + ":" +
            str(self.serie.get_index_slices()[0][2]),
            ind_start=self.serie.get_index_slices()[0][0],
            ind_stop=self.serie.get_index_slices()[0][1] - 1,
            ind_step=self.serie.get_index_slices()[0][2],
        )
        path_dir = self.serie.path_dir
        path_dir_result, self.how_saving = prepare_path_dir_result(
            path_dir, params.saving.path, params.saving.postfix,
            params.saving.how)

        self.path_dir_result = path_dir_result
        self.path_dir_src = Path(path_dir)

        self.surface_tracking_work = WorkSurfaceTracking(params)

        super().__init__(
            path_dir_result=path_dir_result,
            logging_level=logging_level,
            nb_max_workers=nb_max_workers,
        )

        queue_paths = self.add_queue("paths")
        queue_couples_of_names = self.add_queue("couples of names")
        queue_arrays = self.add_queue("arrays")
        queue_angles = self.add_queue("angles")
        queue_couples_of_arrays = self.add_queue(
            "couples of corrected angles and angles")
        queuemod0_angles = self.add_queue("corrected angles copy")
        queuemod_angles = self.add_queue("corrected angles")
        queue_heights = self.add_queue("heights")

        self.add_work(
            "fill_path",
            self.fill_queue_paths,
            output_queue=(queue_paths, queue_couples_of_names),
            kind="one shot",
        )

        self.add_work(
            "read_array",
            self.imread,
            input_queue=queue_paths,
            output_queue=queue_arrays,
            kind="io",
        )

        self.add_work(
            "process_frame",
            self.surface_tracking_work.process_frame_func,
            input_queue=queue_arrays,
            output_queue=queue_angles,
        )

        self.add_work(
            "create_couple",
            self.make_couples,
            input_queue=(queuemod0_angles, queue_angles,
                         queue_couples_of_names),
            output_queue=(queuemod_angles, queue_couples_of_arrays),
            kind="global",
        )

        self.add_work(
            "correct_couple_of_phases",
            self.surface_tracking_work.correctcouple,
            input_queue=queue_couples_of_arrays,
            output_queue=queuemod0_angles,
        )

        self.add_work(
            "calcul_height",
            self.surface_tracking_work.calculheight_func,
            input_queue=queuemod_angles,
            output_queue=queue_heights,
        )

        self.add_work("save",
                      self.save_image,
                      input_queue=queue_heights,
                      kind="io")
コード例 #9
0
ファイル: bos.py プロジェクト: hbcbh1999/fluidimage
class TopologyBOS(TopologyBase):
    """Topology for BOS.

    See https://en.wikipedia.org/wiki/Background-oriented_schlieren_technique

    Parameters
    ----------

    params : None

      A ParamContainer containing the parameters for the computation.

    logging_level : str, {'warning', 'info', 'debug', ...}

      Logging level.

    nb_max_workers : None, int

      Maximum numbers of "workers". If None, a number is computed from the
      number of cores detected. If there are memory errors, you can try to
      decrease the number of workers.

    """
    @classmethod
    def create_default_params(cls):
        """Class method returning the default parameters.

        For developers: cf. fluidsim.base.params

        """
        params = ParamContainer(tag="params")

        params._set_attrib("reference", 0)

        params._set_doc("""
reference : str or int, {0}

    Reference file (from which the displacements will be computed). Can be an
    absolute file path, a file name or the index in the list of files found
    from the parameters in ``params.series``.

""")

        params._set_child(
            "series",
            attribs={
                "path": "",
                "strslice": None,
                "ind_start": 0,
                "ind_stop": None,
                "ind_step": 1,
            },
        )

        params.series._set_doc("""
Parameters indicating the input series of images.

path : str, {''}

    String indicating the input images (can be a full path towards an image
    file or a string given to `glob`).

strslice : None

    String indicating as a Python slicing how series of images are formed.
    See the parameters the PIV topology.

ind_start : int, {0}

ind_step : int, {1}

int_stop : None

""")

        params._set_child("saving",
                          attribs={
                              "path": None,
                              "how": "ask",
                              "postfix": "piv"
                          })

        params.saving._set_doc("""Saving of the results.

path : None or str

    Path of the directory where the data will be saved. If None, the path is
    obtained from the input path and the parameter `postfix`.

how : str {'ask'}

    'ask', 'new_dir', 'complete' or 'recompute'.

postfix : str

    Postfix from which the output file is computed.
""")

        WorkPIV._complete_params_with_default(params)

        params._set_internal_attr(
            "_value_text",
            json.dumps({
                "program": "fluidimage",
                "module": "fluidimage.topologies.bos",
                "class": "TopologyBOS",
            }),
        )

        return params

    def __init__(self, params=None, logging_level="info", nb_max_workers=None):

        if params is None:
            params = self.__class__.create_default_params()

        self.params = params
        self.piv_work = WorkPIV(params)

        self.series = SeriesOfArrays(
            params.series.path,
            params.series.strslice,
            ind_start=params.series.ind_start,
            ind_stop=params.series.ind_stop,
            ind_step=params.series.ind_step,
        )

        path_dir = self.series.serie.path_dir
        path_dir_result, self.how_saving = prepare_path_dir_result(
            path_dir, params.saving.path, params.saving.postfix,
            params.saving.how)

        self.path_dir_result = path_dir_result

        if not isinstance(params.reference, int):
            reference = os.path.expanduser(params.reference)
        else:
            reference = params.reference

        if isinstance(reference, int):
            names = self.series.get_name_all_arrays()
            names.sort()
            path_reference = os.path.join(path_dir, names[reference])
        elif os.path.isfile(reference):
            path_reference = reference
        else:
            path_reference = os.path.join(path_dir_result, reference)
            if not os.path.isfile(path_reference):
                raise ValueError("Bad value of params.reference:" +
                                 path_reference)

        self.path_reference = path_reference
        self.image_reference = imread(path_reference)

        self.results = {}

        def save_piv_object(o):
            ret = o.save(path_dir_result, kind="bos")
            return ret

        self.wq_piv = WaitingQueueThreading("delta",
                                            save_piv_object,
                                            self.results,
                                            topology=self)
        self.wq_couples = WaitingQueueMultiprocessing("couple",
                                                      self.piv_work.calcul,
                                                      self.wq_piv,
                                                      topology=self)
        self.wq_images = WaitingQueueMakeCoupleBOS(
            "array image",
            self.wq_couples,
            topology=self,
            image_reference=self.image_reference,
            path_reference=self.path_reference,
            serie=self.series.serie,
        )
        self.wq0 = WaitingQueueLoadImage(destination=self.wq_images,
                                         path_dir=path_dir,
                                         topology=self)

        super().__init__(
            [self.wq0, self.wq_images, self.wq_couples, self.wq_piv],
            path_output=path_dir_result,
            logging_level=logging_level,
            nb_max_workers=nb_max_workers,
        )

        self.add_series(self.series)

    def add_series(self, series):

        if len(series) == 0:
            logger.warning("add 0 image. No BOS to compute.")
            return

        names = series.get_name_all_arrays()

        if self.how_saving == "complete":
            names_to_compute = []
            for name in names:
                name_bos = get_name_bos(name, series.serie)
                if not os.path.exists(
                        os.path.join(self.path_dir_result, name_bos)):
                    names_to_compute.append(name)

            names = names_to_compute
            if len(names) == 0:
                logger.warning(
                    'topology in mode "complete" and work already done.')
                return

        nb_names = len(names)
        print("Add {} BOS fields to compute.".format(nb_names))

        logger.debug(repr(names))

        print("First files to process:", names[:4])

        self.wq0.add_name_files(names)

        # a little bit strange, to apply mask...
        try:
            params_mask = self.params.mask
        except AttributeError:
            params_mask = None

        im = self.image_reference

        couple = ArrayCouple(names=("", ""),
                             arrays=(im, im),
                             params_mask=params_mask)
        im, _ = couple.get_arrays()

        self.piv_work._prepare_with_image(im)

    def print_at_exit(self, time_since_start):

        txt = "Stop compute after t = {:.2f} s".format(time_since_start)
        try:
            nb_results = len(self.results)
        except AttributeError:
            nb_results = None
        if nb_results is not None and nb_results > 0:
            txt += " ({} bos fields, {:.2f} s/field).".format(
                nb_results, time_since_start / nb_results)
        else:
            txt += "."

        txt += "\npath results:\n" + str(self.path_dir_result)

        print(txt)
コード例 #10
0
ファイル: bos.py プロジェクト: hbcbh1999/fluidimage
    def __init__(self, params=None, logging_level="info", nb_max_workers=None):

        if params is None:
            params = self.__class__.create_default_params()

        self.params = params
        self.piv_work = WorkPIV(params)

        self.series = SeriesOfArrays(
            params.series.path,
            params.series.strslice,
            ind_start=params.series.ind_start,
            ind_stop=params.series.ind_stop,
            ind_step=params.series.ind_step,
        )

        path_dir = self.series.serie.path_dir
        path_dir_result, self.how_saving = prepare_path_dir_result(
            path_dir, params.saving.path, params.saving.postfix,
            params.saving.how)

        self.path_dir_result = path_dir_result

        if not isinstance(params.reference, int):
            reference = os.path.expanduser(params.reference)
        else:
            reference = params.reference

        if isinstance(reference, int):
            names = self.series.get_name_all_arrays()
            names.sort()
            path_reference = os.path.join(path_dir, names[reference])
        elif os.path.isfile(reference):
            path_reference = reference
        else:
            path_reference = os.path.join(path_dir_result, reference)
            if not os.path.isfile(path_reference):
                raise ValueError("Bad value of params.reference:" +
                                 path_reference)

        self.path_reference = path_reference
        self.image_reference = imread(path_reference)

        self.results = {}

        def save_piv_object(o):
            ret = o.save(path_dir_result, kind="bos")
            return ret

        self.wq_piv = WaitingQueueThreading("delta",
                                            save_piv_object,
                                            self.results,
                                            topology=self)
        self.wq_couples = WaitingQueueMultiprocessing("couple",
                                                      self.piv_work.calcul,
                                                      self.wq_piv,
                                                      topology=self)
        self.wq_images = WaitingQueueMakeCoupleBOS(
            "array image",
            self.wq_couples,
            topology=self,
            image_reference=self.image_reference,
            path_reference=self.path_reference,
            serie=self.series.serie,
        )
        self.wq0 = WaitingQueueLoadImage(destination=self.wq_images,
                                         path_dir=path_dir,
                                         topology=self)

        super().__init__(
            [self.wq0, self.wq_images, self.wq_couples, self.wq_piv],
            path_output=path_dir_result,
            logging_level=logging_level,
            nb_max_workers=nb_max_workers,
        )

        self.add_series(self.series)
コード例 #11
0
ファイル: try_piv.py プロジェクト: hbcbh1999/fluidimage
import params_piv

try:
    reload
except NameError:
    from importlib import reload

reload(params_piv)

iexp = 0

params = params_piv.make_params_piv(iexp)

work = WorkPIV(params=params)

pathin = params.series.path

series = SeriesOfArrays(pathin,
                        params.series.strcouple,
                        ind_start=params.series.ind_start)

# c060a.png and c060b.png
serie = series.get_serie_from_index(params.series.ind_start)

piv = work.calcul(serie)

# piv.piv0.display(show_interp=True, scale=0.05, show_error=True)

piv.display(show_interp=False, scale=0.05, show_error=True)
コード例 #12
0
    def __init__(self, params=None, logging_level="info", nb_max_workers=None):

        if params is None:
            params = self.__class__.create_default_params()

        self.params = params
        self.piv_work = WorkPIV(params)

        serie_arrays = SerieOfArraysFromFiles(params.series.path)

        self.series = SeriesOfArrays(
            serie_arrays,
            params.series.strcouple,
            ind_start=params.series.ind_start,
            ind_stop=params.series.ind_stop,
            ind_step=params.series.ind_step,
        )

        path_dir = self.series.serie.path_dir
        path_dir_result, self.how_saving = prepare_path_dir_result(
            path_dir, params.saving.path, params.saving.postfix,
            params.saving.how)

        self.path_dir_result = path_dir_result

        self.results = {}

        def save_piv_object(o):
            ret = o.save(path_dir_result)
            return ret

        self.wq_piv = WaitingQueueThreading("delta",
                                            save_piv_object,
                                            self.results,
                                            topology=self)
        self.wq_couples = WaitingQueueMultiprocessing("couple",
                                                      self.piv_work.calcul,
                                                      self.wq_piv,
                                                      topology=self)

        self.wq_images = WaitingQueueMakeCouple("array image",
                                                self.wq_couples,
                                                topology=self)

        if params.preproc.im2im is not None:
            self.im2im_func = image2image.TopologyImage2Image.init_im2im(
                self, params.preproc)

            self.wq_images0 = WaitingQueueMultiprocessing("image ",
                                                          self.im2im_func,
                                                          self.wq_images,
                                                          topology=self)
            wq_after_load = self.wq_images0
        else:
            wq_after_load = self.wq_images

        self.wq0 = WaitingQueueLoadImage(destination=wq_after_load,
                                         path_dir=path_dir,
                                         topology=self)

        if params.preproc.im2im is not None:
            waiting_queues = [
                self.wq0,
                self.wq_images0,
                self.wq_images,
                self.wq_couples,
                self.wq_piv,
            ]
        else:
            waiting_queues = [
                self.wq0,
                self.wq_images,
                self.wq_couples,
                self.wq_piv,
            ]

        super().__init__(
            waiting_queues,
            path_output=path_dir_result,
            logging_level=logging_level,
            nb_max_workers=nb_max_workers,
        )

        self.add_series(self.series)
コード例 #13
0
ファイル: _try_piv.py プロジェクト: hbcbh1999/fluidimage
# params.piv0.method_correl = 'pythran'

params.multipass.number = 1
params.multipass.use_tps = False
# params.multipass.coeff_zoom = [2, 2]

# bug params.piv0.shape_crop_im0 = 128  # !!
params.piv0.shape_crop_im0 = 64  # (80, 90)
# params.piv0.shape_crop_im1 = (38, 36)
params.fix.correl_min = 0.2
params.fix.threshold_diff_neighbour = 4
# params.piv0.grid.overlap = 10

piv = WorkPIV(params=params)

series = SeriesOfArrays("../../../image_samples/Oseen/Images", "i+1:i+3")
serie = series.get_serie_from_index(0)

result = piv.calcul(serie)

result.display()

result.save()

# lightresult = result.make_light_result()
# lightresult.save()

# lightresultload = LightPIVResults(str_path='piv_Oseen_center01-02_light.h5')

# f=h5netcdf.File('piv_Oseen_center01-02.h5')
# f=h5py.File('piv_Oseen_center01-02.h5')
コード例 #14
0
ファイル: preproc.py プロジェクト: hbcbh1999/fluidimage
class TopologyPreproc(TopologyBase):
    """Preprocess series of images.

    The most useful methods for the user (in particular :func:`compute`) are
    defined in the base class :class:`fluidimage.topologies.base.TopologyBase`.

    Parameters
    ----------

    params: None

      A ParamContainer (created with the class method
      :func:`create_default_params`) containing the parameters for the
      computation.

    logging_level: str, {'warning', 'info', 'debug', ...}

      Logging level.

    nb_max_workers: None, int

      Maximum numbers of "workers". If None, a number is computed from the
      number of cores detected. If there are memory errors, you can try to
      decrease the number of workers.

    """
    @classmethod
    def create_default_params(cls, backend="python"):
        """Class method returning the default parameters.

        Typical usage::

          params = TopologyPreproc.create_default_params()
          # modify parameters here
          ...

          topo = TopologyPreproc(params)

        Parameters
        ----------

        backend : {'python', 'opencv'}

            Specifies which backend to use.

        """
        params = WorkPreproc.create_default_params(backend)
        params.preproc.series._set_attribs({
            "strcouple": "i:i+1",
            "ind_start": 0,
            "ind_stop": None,
            "ind_step": 1,
        })

        params.preproc.series._set_doc("""
Parameters describing image loading prior to preprocessing.

strcouple : str
    Determines the subset from the whole series of images that should be loaded
    and preprocessed together. Particularly useful when temporal filtering requires
    multiple images.

    For example, for a series of images with just one index,

        >>> strcouple = 'i:i+1'   # load one image at a time
        >>> strcouple = 'i-2:i+3'  # loads 5 images at a time

    Similarly for two indices,

        >>> strcouple = 'i:i+1,0'   # load one image at a time, with second index fixed
        >>> strcouple = 'i-2:i+3,0'  # loads 5 images at a time, with second index fixed

    .. todo::

        Rename this parameter to strsubset / strslice

ind_start : int
    Start index for the whole series of images being loaded.
    For more details: see `class SeriesOfArrays`.

ind_stop : int
    Stop index for the whole series of images being loaded.
    For more details: see `class SeriesOfArrays`.

ind_step : int
    Step index for the whole series of images being loaded.
    For more details: see `class SeriesOfArrays`.

""")

        params.preproc._set_child(
            "saving",
            attribs={
                "path": None,
                "strcouple": None,
                "how": "ask",
                "format": "img",
                "postfix": "pre",
            },
        )

        params.preproc.saving._set_doc("""
Parameters describing image saving after preprocessing.

path : str or None
    Path to which preprocessed images are saved.

str_subset : str or None
    NotImplemented! Determines the sub-subset of images must be saved from subset
    of images that were loaded and preprocessed. When set as None, saves the
    middle image from every subset.

    .. todo::

        Implement the option params.saving.str_subset...

how : str {'ask', 'new_dir', 'complete', 'recompute'}
    How preprocessed images must be saved if it already exists or not.

format : str {'img', 'hdf5'}
    Format in which preprocessed image data must be saved.

postfix : str
    A suffix added to the new directory where preprocessed images are saved.

""")

        params._set_internal_attr(
            "_value_text",
            json.dumps({
                "program": "fluidimage",
                "module": "fluidimage.topologies.preproc",
                "class": "TopologyPreproc",
            }),
        )

        params._set_child("im2im")
        image2image.complete_im2im_params_with_default(params.im2im)

        return params

    def __init__(self,
                 params: ParamContainer,
                 logging_level="info",
                 nb_max_workers=None):
        self.params = params.preproc

        self.preproc_work = WorkPreproc(params)
        self.results = []
        self.display = self.preproc_work.display

        serie_arrays = self.preproc_work.serie_arrays
        self.series = SeriesOfArrays(
            serie_arrays,
            params.preproc.series.strcouple,
            ind_start=params.preproc.series.ind_start,
            ind_stop=params.preproc.series.ind_stop,
            ind_step=params.preproc.series.ind_step,
        )

        subset = self.series.get_serie_from_index(0)
        self.nb_items_per_serie = subset.get_nb_arrays()

        if os.path.isdir(params.preproc.series.path):
            path_dir = params.preproc.series.path
        else:
            path_dir = os.path.dirname(params.preproc.series.path)
        self.path_dir_input = path_dir

        path_dir_result, self.how_saving = prepare_path_dir_result(
            path_dir,
            params.preproc.saving.path,
            params.preproc.saving.postfix,
            params.preproc.saving.how,
        )

        super().__init__(
            path_dir_result=path_dir_result,
            logging_level=logging_level,
            nb_max_workers=nb_max_workers,
        )

        self.params.saving.path = self.path_dir_result

        # Define waiting queues
        queue_subsets_of_names = self.add_queue("subsets of filenames")
        queue_paths = self.add_queue("image paths")
        queue_arrays = queue_arrays1 = self.add_queue("arrays")
        queue_subsets_of_arrays = self.add_queue("subsets of arrays")
        queue_preproc_objects = self.add_queue("preproc results")

        if params.im2im.im2im is not None:
            queue_arrays1 = self.add_queue("arrays1")

        # Define works
        self.add_work(
            "fill (subsets_of_names, paths)",
            func_or_cls=self.fill_subsets_of_names_and_paths,
            output_queue=(queue_subsets_of_names, queue_paths),
            kind=("global", "one shot"),
        )

        self.add_work(
            "imread",
            func_or_cls=imread,
            input_queue=queue_paths,
            output_queue=queue_arrays,
            kind="io",
        )

        if params.im2im.im2im is not None:
            im2im_func = image2image.TopologyImage2Image.init_im2im(
                self, params.im2im)

            self.add_work(
                "image2image",
                func_or_cls=im2im_func,
                input_queue=queue_arrays,
                output_queue=queue_arrays1,
            )

        self.add_work(
            "make subsets of arrays",
            func_or_cls=self.make_subsets,
            input_queue=(queue_subsets_of_names, queue_arrays1),
            output_queue=queue_subsets_of_arrays,
            kind="global",
        )

        self.add_work(
            "preproc a subset of arrays",
            func_or_cls=self.preproc_work.calcul,
            params_cls=params,
            input_queue=queue_subsets_of_arrays,
            output_queue=queue_preproc_objects,
        )

        self.add_work(
            "save images",
            func_or_cls=self.save_preproc_object,
            input_queue=queue_preproc_objects,
            kind="io",
        )

    def save_preproc_object(self, obj: ArraySubset):
        """Save a preprocessing object"""
        ret = obj.save(path=self.path_dir_result)
        self.results.append(ret)

    def init_series(self) -> List[str]:
        """Initializes the SeriesOfArrays object `self.series` based on input
        parameters."""
        series = self.series
        if not series:
            logger.warning(
                "encountered empty series. No images to preprocess.")
            return

        if self.how_saving == "complete":
            index_subsets = []
            for ind_subset, subset in self.series.items():
                names_serie = subset.get_name_arrays()
                name_preproc = get_name_preproc(
                    subset,
                    names_serie,
                    ind_subset,
                    series.nb_series,
                    self.params.saving.format,
                )
                if not (self.path_dir_result / name_preproc).exists():
                    index_subsets.append(ind_subset)
            series.set_index_series(index_subsets)
            if logger.isEnabledFor(DEBUG):
                logger.debug(
                    repr([subset.get_name_arrays() for subset in series]))

        nb_subsets = len(series)
        if nb_subsets == 0:
            logger.warning(
                'topology in mode "complete" and work already done.')
            return
        elif nb_subsets == 1:
            plurial = ""
        else:
            plurial = "s"

        logger.info(f"Add {nb_subsets} image serie{plurial} to compute.")

    def fill_subsets_of_names_and_paths(self, input_queue: None,
                                        output_queues: Tuple[Dict]) -> None:
        """Fill the two first queues"""
        assert input_queue is None
        queue_subsets_of_names, queue_paths = output_queues

        self.init_series()

        for ind_subset, subset in self.series.items():
            queue_subsets_of_names[ind_subset] = subset.get_name_arrays()
            for name, path in subset.get_name_path_arrays():
                queue_paths[name] = path

    def make_subsets(self, input_queues: Tuple[Dict],
                     output_queue: Dict) -> bool:
        """Create the subsets of images"""
        queue_subsets_of_names, queue_arrays = input_queues
        # for each name subset
        for key, names in list(queue_subsets_of_names.items()):
            # if correspondant arrays have been loaded from images,
            # make an array subset
            if all([name in queue_arrays for name in names]):
                arrays = (queue_arrays[name] for name in names)
                serie = copy.copy(self.series.get_serie_from_index(key))

                array_subset = ArraySubset(names=names,
                                           arrays=arrays,
                                           serie=serie)
                output_queue[key] = array_subset
                del queue_subsets_of_names[key]
                # remove the image_array if it not will be used anymore

                key_arrays = list(queue_arrays.keys())
                for key_array in key_arrays:
                    if not is_name_in_queue(key_array, queue_subsets_of_names):
                        del queue_arrays[key_array]
コード例 #15
0
ファイル: preproc.py プロジェクト: hbcbh1999/fluidimage
    def __init__(self,
                 params: ParamContainer,
                 logging_level="info",
                 nb_max_workers=None):
        self.params = params.preproc

        self.preproc_work = WorkPreproc(params)
        self.results = []
        self.display = self.preproc_work.display

        serie_arrays = self.preproc_work.serie_arrays
        self.series = SeriesOfArrays(
            serie_arrays,
            params.preproc.series.strcouple,
            ind_start=params.preproc.series.ind_start,
            ind_stop=params.preproc.series.ind_stop,
            ind_step=params.preproc.series.ind_step,
        )

        subset = self.series.get_serie_from_index(0)
        self.nb_items_per_serie = subset.get_nb_arrays()

        if os.path.isdir(params.preproc.series.path):
            path_dir = params.preproc.series.path
        else:
            path_dir = os.path.dirname(params.preproc.series.path)
        self.path_dir_input = path_dir

        path_dir_result, self.how_saving = prepare_path_dir_result(
            path_dir,
            params.preproc.saving.path,
            params.preproc.saving.postfix,
            params.preproc.saving.how,
        )

        super().__init__(
            path_dir_result=path_dir_result,
            logging_level=logging_level,
            nb_max_workers=nb_max_workers,
        )

        self.params.saving.path = self.path_dir_result

        # Define waiting queues
        queue_subsets_of_names = self.add_queue("subsets of filenames")
        queue_paths = self.add_queue("image paths")
        queue_arrays = queue_arrays1 = self.add_queue("arrays")
        queue_subsets_of_arrays = self.add_queue("subsets of arrays")
        queue_preproc_objects = self.add_queue("preproc results")

        if params.im2im.im2im is not None:
            queue_arrays1 = self.add_queue("arrays1")

        # Define works
        self.add_work(
            "fill (subsets_of_names, paths)",
            func_or_cls=self.fill_subsets_of_names_and_paths,
            output_queue=(queue_subsets_of_names, queue_paths),
            kind=("global", "one shot"),
        )

        self.add_work(
            "imread",
            func_or_cls=imread,
            input_queue=queue_paths,
            output_queue=queue_arrays,
            kind="io",
        )

        if params.im2im.im2im is not None:
            im2im_func = image2image.TopologyImage2Image.init_im2im(
                self, params.im2im)

            self.add_work(
                "image2image",
                func_or_cls=im2im_func,
                input_queue=queue_arrays,
                output_queue=queue_arrays1,
            )

        self.add_work(
            "make subsets of arrays",
            func_or_cls=self.make_subsets,
            input_queue=(queue_subsets_of_names, queue_arrays1),
            output_queue=queue_subsets_of_arrays,
            kind="global",
        )

        self.add_work(
            "preproc a subset of arrays",
            func_or_cls=self.preproc_work.calcul,
            params_cls=params,
            input_queue=queue_subsets_of_arrays,
            output_queue=queue_preproc_objects,
        )

        self.add_work(
            "save images",
            func_or_cls=self.save_preproc_object,
            input_queue=queue_preproc_objects,
            kind="io",
        )
コード例 #16
0
import os

from fluidimage import SeriesOfArrays
from fluidimage.works.piv import WorkPIV

from path_images import get_path

params = WorkPIV.create_default_params()

params.piv0.shape_crop_im0 = 128
params.piv0.grid.overlap = 0.5

params.multipass.number = 2
params.multipass.use_tps = False

params.fix.displacement_max = 15
params.fix.correl_min = 0.1

piv = WorkPIV(params=params)

path = os.path.join(get_path('2001A'), 'A*')

series = SeriesOfArrays(path, 'i, 1:3', ind_start=1)
serie = series.get_serie_from_index(1)

result = piv.calcul(serie)

result.display()