def run_model(model, th_init=np.random.randn(D) * th0, q=0.1, fly=False): th = th_init if fly: z = ff.BrightnessVars(N) else: z = ff.BrightnessVars(N, range(N)) th_stepper = ff.ThetaStepMH(model.log_p_joint, stepsize) if fly: z__stepper = ff.zStepMH(model.log_pseudo_lik, q) ths = [] num_rejects = 0 for i in range(N_steps): num_lik_prev = model.num_lik_evals if i % N_ess == 0 and i > 0: #print pypmc.tools.convergence.ess(ths) # TODO: is this correct? #print ess(ths) np.savetxt('trace-untuned-{0}.csv'.format(i), np.array(ths)) ths = [] th = th_stepper.step(th, z) # Markov transition step for theta num_rejects += th_stepper.num_rejects if fly: z = z__stepper.step(th, z) # Markov transition step for z ths.append(th) print "\t\t".join( map(lambda x: "{0:.5f}".format(x), [ i, len(z.bright), model.num_lik_evals - num_lik_prev, 1.0 - num_rejects / float(i + 1), -1.0 * model.log_p_marg(th, increment_ctr=False) ])) return th
def main(): # Generate synthetic data x = 2 * npr.rand(N, D) - 1 # data features, an (N,D) array x[:, 0] = 1 th_true = 10.0 * np.array([0, 1, 1]) y = np.dot(x, th_true[:, None])[:, 0] t = npr.rand(N) > (1 / (1 + np.exp(y)) ) # data targets, an (N) array of 0s and 1s # Obtain joint distributions over z and th model = ff.LogisticModel(x, t, th0=th0, y0=y0) # Set up step functions th = np.random.randn(D) * th0 z = ff.BrightnessVars(N) th_stepper = ff.ThetaStepMH(model.log_p_joint, stepsize) z__stepper = ff.zStepMH(model.log_pseudo_lik, q) plt.ion() ax = plt.figure(figsize=(8, 6)).add_subplot(111) while True: th = th_stepper.step(th, z) # Markov transition step for theta z = z__stepper.step(th, z) # Markov transition step for z update_fig(ax, x, y, z, th, t) plt.draw() plt.pause(0.05)
def run_model(model, q=0.1, fly=False): ''' function to run model ''' th = np.random.randn(D) * th0 if fly: z = ff.BrightnessVars(N, range(int(q * N))) else: z = ff.BrightnessVars(N, range(N)) th_stepper = ff.ThetaStepMH(model.log_p_joint, stepsize) if fly: z__stepper = ff.zStepMH(model.log_pseudo_lik, q) th_lists = [] # trace of th num_rejects_list = [] # num_iter_list = [] # number of num_lik_evals for each iteration for _ in range(N_steps): num_lik_prev = model.num_lik_evals if _ % N_ess == 0 and _ > 0: #print pypmc.tools.convergence.ess(th_lists) # TODO: is this correct? #print ess(th_lists) np.savetxt('trace-untuned-{0}.csv'.format(_), np.array(th_lists)) th_lists = [] th = th_stepper.step(th, z) # Markov transition step for theta if fly: z = z__stepper.step(th, z) # Markov transition step for z th_lists.append(th) num_rejects_list.append(th_stepper.num_rejects) num_iter_list.append(model.num_lik_evals - num_lik_prev) print "Accept rate: {0}".format(1.0 - sum(num_rejects_list) / float(_ + 1)) print "Likelihood evals in iter {0}: {1}".format( _, model.num_lik_evals - num_lik_prev) print "Neg log posterior: {0}".format( -1.0 * model.log_p_marg(th, increment_ctr=False)) print "Number bright points: {0}".format(len(z.bright)) return th, num_iter_list, th_lists
def logistic_regression_chain(x, t, N_iter=100, stepsize=1, th0=1, q=0.1, y0=1, seed=None): # Set seed npr.seed(seed) # Obtain joint distributions over z and th and set step functions model = ff.LogisticModel(x, t, th0=th0, y0=y0) z__stepper = ff.zStepMH(model.log_pseudo_lik, q) th_stepper = ff.ThetaStepMH(model.log_p_joint, stepsize) # Initialize N, D = x.shape th = np.random.randn(D) * th0 z = ff.BrightnessVars(N) # run chain th_chain = np.zeros((N_iter, ) + th.shape) z_chain = np.zeros((N_iter, N), dtype=bool) for i in range(N_iter): th = th_stepper.step(th, z) z = z__stepper.step(th, z) # Record the intermediate results th_chain[i, :] = th.copy() z_chain[i, z.bright] = 1 print "th0 = ", th0, "frac accepted is", th_stepper.frac_accepted, "bright frac is:", np.mean( z_chain) return th_chain, z_chain
def run_model(model, q=0.1, fly=False, verbose=False): ''' function to run model ''' th = np.random.randn(D) * th0 # Init steppers if fly: z = ff.BrightnessVars(N, range(int(q * N))) else: z = ff.BrightnessVars(N, range(N)) th_stepper = ff.ThetaStepMH(model.log_p_joint, stepsize) if fly: z_stepper = ff.zStepMH(model.log_pseudo_lik, q) # Trace list num_rejects_list = [] acceptance_list = [] num_lik_evals_list = [] neg_log_list = [] performance_dict = {} # Trace - Sampling sample_num_lik_evals_list = [] sample_th_list = [] # Run chain for _ in range(N_steps + N_ess): num_lik_prev = model.num_lik_evals # Markov transition th = th_stepper.step(th, z) # Markov transition step for theta if fly: z = z_stepper.step(th, z) # Markov transition step for z # Record performance num_rejects = th_stepper.num_rejects num_lik_evals = model.num_lik_evals - num_lik_prev acceptance = 1.0 - sum(num_rejects_list) / float(_ + 1) neg_log = -1.0 * model.log_p_marg(th, increment_ctr=False) if _ < N_steps: num_rejects_list.append(num_rejects) num_lik_evals_list.append(num_lik_evals) acceptance_list.append(acceptance) neg_log_list.append(neg_log) else: # _ >= N_steps sample_num_lik_evals_list.append(num_lik_evals) sample_th_list.append(th) # Print info if verbose or (_ % 50 == 0): print "Accept rate: {0}".format(acceptance) print "Likelihood evals in iter {0}: {1}".format(_, num_lik_evals) print "Neg log posterior: {0}".format(neg_log) print "Number bright points: {0}".format(len(z.bright)) sample_evals = sum(sample_num_lik_evals_list) np.savetxt('trace-{0}-{1}.csv'.format(model.name, N_ess), np.array(sample_th_list)) performance_dict[KEY_NAME] = model.name performance_dict[KEY_NUM_REJECTS] = num_rejects_list performance_dict[KEY_LIK_EVALS] = num_lik_evals_list performance_dict[KEY_ACCEPTANCE] = acceptance_list performance_dict[KEY_NEG_LOG] = neg_log_list performance_dict[KEY_SAMPLE_EVALS] = sample_evals return performance_dict
def create_stepper(self, prob, D_prob): stepsize = 1.5 return ff.ThetaStepMH(prob, stepsize)
def test_multiclass_logistic_model_MH(): stepsize = 1 model = create_toy_multiclass_logistic_model() th_stepper = ff.ThetaStepMH(model.log_p_joint, stepsize) correct_moments = correct_moments_multiclass_logistic check_flymc_converges(model, correct_moments, th_stepper)
def test_robust_regression_model_MH(): stepsize = 1 model = create_toy_robust_regression_model() th_stepper = ff.ThetaStepMH(model.log_p_joint, stepsize) correct_moments = correct_moments_robust_regression check_flymc_converges(model, correct_moments, th_stepper)