コード例 #1
0
ファイル: tool.py プロジェクト: afrl-ri/adversarialDistance
def plotAdv(img, model):
    foolModel = foolbox.models.KerasModel(model, bounds=(0, 255))
    attack = foolbox.attacks.L1BasicIterativeAttack(foolModel,
                                                    criterion=TargetClass(1),
                                                    distance=MAE)
    adversarial_object = attack(img, label=0, unpack=False)
    advImg = adversarial_object.image

    plt.figure()

    plt.subplot(1, 3, 1)
    plt.title('Original')
    plt.imshow(img / 255)  # division by 255 to convert [0, 255] to [0, 1]
    plt.axis('off')

    plt.subplot(1, 3, 2)
    plt.title('Adversarial')
    plt.imshow(advImg / 255)  # ::-1 to convert BGR to RGB
    plt.axis('off')

    plt.subplot(1, 3, 3)
    plt.title('Difference')
    difference = ((advImg - img) / 255)
    plt.imshow(difference / abs(difference).max() * 0.2 + 0.5)
    plt.axis('off')

    plt.show()
コード例 #2
0
def boundary_attack(model, img, target):
    img_01 = (img / 255).astype(np.float32)
    atk = BoundaryAttack(model, TargetClass(target))

    label = 1-target
    adv = atk(img_01, label, iterations=1000, verbose=False,
              log_every_n_steps=100)
    if adv is not None:
        adv = np.clip(adv * 255, 0, 255)
    return adv
コード例 #3
0
def foolbox_attack(name, model):

    target = re.search(r'\d{0,2}$', name).group()
    if target is not None:
        name = re.sub('_' + target, '', name)

    if name == 'FGSM':
        return foolbox.attacks.FGSM(model, distance=Linf)
    elif name == 'S&P':
        return foolbox.attacks.SaltAndPepperNoiseAttack(model, distance=Linf)
    elif name == 'C&W':
        return foolbox.attacks.CarliniWagnerL2Attack(model, distance=Linf)
    elif name == 'SinglePixelAttack':
        return foolbox.attacks.SinglePixelAttack(model, distance=Linf)
    elif name == 'LocalSearchAttack':
        return foolbox.attacks.LocalSearchAttack(model, distance=Linf)
    elif name == 'SpatialAttack':
        return foolbox.attacks.SpatialAttack(model, distance=Linf)
    elif name == 'ShiftsAttack':
        return foolbox.attacks.SpatialAttack(model, distance=Linf)
    elif name == 'BoundaryAttack':
        return foolbox.attacks.BoundaryAttack(model, distance=Linf)
    elif name == 'PointwiseAttack':
        return foolbox.attacks.PointwiseAttack(model, distance=Linf)
    elif name == 'ContrastReductionAttack':
        return foolbox.attacks.ContrastReductionAttack(model, distance=Linf)
    elif name == 'AdditiveUniformNoiseAttack':
        return foolbox.attacks.AdditiveUniformNoiseAttack(model, distance=Linf)
    elif name == 'AdditiveGaussianNoiseAttack':
        return foolbox.attacks.AdditiveGaussianNoiseAttack(model,
                                                           distance=Linf)
    elif name == 'BlendedUniformNoiseAttack':
        return foolbox.attacks.BlendedUniformNoiseAttack(model, distance=Linf)
    elif name == 'GaussianBlurAttack':
        return foolbox.attacks.GaussianBlurAttack(model, distance=Linf)
    elif name == 'DeepFoolAttack':
        return foolbox.attacks.DeepFoolAttack(model, distance=Linf)
    elif name == 'GenAttack':
        return foolbox.attacks.GenAttack(model,
                                         criterion=TargetClass(int(target)),
                                         distance=Linf)
    elif name == 'PrecomputedAdversarialsAttack':
        return foolbox.attacks.PrecomputedAdversarialsAttack(model,
                                                             distance=Linf)
    elif name == 'InversionAttack':
        return foolbox.attacks.InversionAttack(model, distance=Linf)
    elif name == 'HopSkipJumpAttack':
        return foolbox.attacks.HopSkipJumpAttack(model, distance=Linf)
    elif name == 'RandomPGD':
        return foolbox.attacks.RandomPGD(model, distance=Linf)
    else:
        print('Oops')
コード例 #4
0
def attack_switcher(att, fmodel):
  """ Initialize different attacks. """

  switcher = {
    "fgsm": fa.GradientSignAttack(fmodel, distance=Linf),
    "bim": fa.LinfinityBasicIterativeAttack(fmodel, distance=Linf),
    "mim": fa.MomentumIterativeAttack(fmodel, distance=Linf),
    "df": LimitedDeepFoolL2Attack(fmodel),
    "cw": LimitedCarliniWagnerL2Attack(fmodel),
    "hsj": LimitedHopSkipJumpAttack(fmodel, distance=Linf),
    "ga": fa.GenAttack(fmodel, criterion=TargetClass(9), distance=Linf),
  }

  return switcher.get(att)
コード例 #5
0
ファイル: main_pytorch.py プロジェクト: machanic/QEBA
         ITER = 500
         maxN = 30
         initN = 30
     else:
         raise NotImplementedError()
 #ITER = 20
 print("PGEN: %s" % PGEN)
 if p_gen is None:
     rho = 1.0
 else:
     rvs = p_gen.generate_ps(src_image, 10, level=999)
     grad_gt = fmodel.gradient_one(src_image, label=src_label)
     rho = p_gen.calc_rho(grad_gt, src_image).item()
 print("rho: %.4f" % rho)
 attack = foolbox.attacks.BAPP_custom(fmodel,
                                      criterion=TargetClass(src_label))
 adv = attack(tgt_image,
              tgt_label,
              starting_point=src_image,
              iterations=ITER,
              stepsize_search='geometric_progression',
              unpack=False,
              max_num_evals=maxN,
              initial_num_evals=initN,
              internal_dtype=np.float32,
              rv_generator=p_gen,
              atk_level=args.atk_level,
              mask=mask,
              batch_size=16,
              rho_ref=rho,
              log_every_n_steps=1,
コード例 #6
0
ファイル: main.py プロジェクト: machanic/QEBA
    #image, label = foolbox.utils.imagenet_example()
    #print (image.shape)
    #print (label)
    src_image = load_imagenet_img('../raw_data/imagenet_example/bad_joke_eel.png')
    tgt_image = load_imagenet_img('../raw_data/imagenet_example/awkward_moment_seal.png')
    #tgt_image = load_imagenet_img('../raw_data/imagenet_example/example.png')
    src_label = np.argmax(fmodel.forward_one(src_image[:,:,::-1]))
    tgt_label = np.argmax(fmodel.forward_one(tgt_image[:,:,::-1]))
    print (src_image.shape)
    print (tgt_image.shape)
    print ("Source Image Label:", src_label)
    print ("Target Image Label:", tgt_label)

    #attack = foolbox.attacks.BoundaryAttackPlusPlus(fmodel)
    #attack = foolbox.attacks.BoundaryAttackPlusPlus(fmodel, criterion=TargetClass(src_label))
    attack = foolbox.attacks.BAPP_custom(fmodel, criterion=TargetClass(src_label))
    adv = attack(tgt_image[:,:,::-1], tgt_label, starting_point = src_image[:,:,::-1], iterations=20, stepsize_search='geometric_progression', verbose=True, unpack=False, max_num_evals=100, initial_num_evals=100)

    #attack = foolbox.attacks.BoundaryAttack(fmodel)
    #attack = foolbox.attacks.BoundaryAttack(fmodel, criterion=TargetClass(src_label))
    #adv = attack(tgt_image[:,:,::-1], tgt_label, starting_point = src_image[:,:,::-1], iterations=2000, log_every_n_steps=50, verbose=True, unpack=False)

    #Final adv
    adversarial = adv.perturbed[:,:,::-1]
    adv_label = np.argmax(fmodel.forward_one(adversarial[:,:,::-1]))
    ret1 = tgt_image/255
    ret2 = adversarial/255
    print ("Total calls:", adv._total_prediction_calls)
    print ("Final MSE between Target and Adv:", MSE(ret1, ret2))
    print ("Source label: %d; Target label: %d; Adv label: %d"%(src_label, tgt_label, adv_label))
    import matplotlib.pyplot as plt
                                                  l1, 0)
        elif args.experiment_type == "VGG":
            model = convolutional.vgg_model_wide(args.dataset, 0, l1, 0)
        elif args.experiment_type == "leNet":
            model = convolutional.leNet_model_wide(0, l1, 0)
        else:
            raise Exception("Invalid model!")

        model.fit(x_train, y_train, epochs=50, batch_size=128)
        preds = np.argmax(model.predict(x_test), axis=1)

        kmodel = KerasModel(model=model, bounds=(min_, max_))

        attack = None
        if args.attack_type == 'l2':
            attack = CarliniWagnerL2Attack(kmodel, TargetClass(7))
        elif args.attack_type == 'linf':
            attack = RandomPGD(kmodel, TargetClass(7))

        x_sample = np.take(x_test, ones, axis=0)

        # We exclude by default those examples which are not predicted by the classifier as 1s.
        true_ones = np.where(preds == 1)[0]

        x_sample = np.take(x_sample, true_ones, axis=0)
        y_sample = np.array([to_one_hot(1) for _ in x_sample])

        adversarial = None
        if args.attack_type == 'l2':
            adversarial = attack(x_sample,
                                 np.argmax(y_sample, axis=1),
コード例 #8
0
dog_x = np.expand_dims(dog_img, axis=0)
cat_x = np.expand_dims(cat_img, axis=0)

# Build a foolbox model
fmodel = KerasModel(kmodel, bounds=(-1, 1))

# label of the target class
preds = kmodel.predict(dog_x)
dog_label = np.argmax(preds)

# label of the original class
preds = kmodel.predict(cat_x)
cat_label = np.argmax(preds)

criterion_1 = TopKMisclassification(k=5)
criterion_2 = TargetClass(dog_label)
criterion_3 = TargetClassProbability(dog_label, p=0.5)
criterion = criterion_1 & criterion_2 & criterion_3

attack = BoundaryAttack(model=fmodel, criterion=criterion)

iteration_size = 1000
global_iterations = 0
# Run boundary attack to generate an adversarial example
adversarial = attack(cat_img,
                     label=cat_label,
                     unpack=False,
                     iterations=iteration_size,
                     starting_point=dog_img,
                     log_every_n_steps=10,
                     verbose=True)
コード例 #9
0
    json_file.close()
    cnn = model_from_json(loaded_model_json)
    cnn.load_weights("model.h5")
    print("Loaded model from disk")

# FOOLING
fmodel = foolbox.models.KerasModel(cnn, bounds=(0, 1))

for _ in range(10):
    indx = np.random.randint(0, x_test.shape[0])
    image, label = x_test[indx], y_test[indx]

    print("Label: ", np.argmax(label))
    print("Prediction: ", np.argmax(fmodel.predictions(image)))
    # Apply attack
    attack = LBFGSAttack(fmodel, criterion=TargetClass(3))
    adversarial = attack(image, np.argmax(label))
    if adversarial is None: break
    print("Adversarial Prediction: ",
          np.argmax(fmodel.predictions(adversarial)))
    print("Adversarial Prediction: ", softmax(fmodel.predictions(adversarial)))

    # Plot the attack
    plt.figure()
    plt.subplot(1, 3, 1)
    plt.title("Original")
    plt.imshow(image.reshape((28, 28)), cmap="gray")
    plt.axis("off")

    plt.subplot(1, 3, 2)
    plt.title("Adversarial")
コード例 #10
0
def validate(val_loader, model, epsilon, args):
    batch_time = AverageMeter('Time', ':6.3f')
    top1 = AverageMeter('Acc@1', ':6.2f')
    progress = ProgressMeter(len(val_loader), [batch_time, top1],
                             prefix='Test: ')

    # switch to evaluate mode
    model.eval()

    mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
    std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))
    preprocessing = (mean, std)
    fmodel = PyTorchModel(model,
                          bounds=(0, 1),
                          num_classes=1000,
                          preprocessing=preprocessing)

    clean_labels = np.zeros(len(val_loader))
    target_labels = np.zeros(len(val_loader))
    clean_pred_labels = np.zeros(len(val_loader))
    adv_pred_labels = np.zeros(len(val_loader))

    end = time.time()

    # Batch processing is not supported in in foolbox 1.8, so we feed images one by one. Note that we are using a batch
    # size of 2, which means we consider every other image (due to computational costs)
    for i, (images, target) in enumerate(val_loader):

        image = images.cpu().numpy()[0]
        clean_label = target.cpu().numpy()[0]

        target_label = np.random.choice(
            np.setdiff1d(np.arange(1000), clean_label))
        attack = RandomStartProjectedGradientDescentAttack(
            model=fmodel,
            criterion=TargetClass(target_label),
            distance=Linfinity)
        adversarial = attack(image,
                             clean_label,
                             binary_search=False,
                             epsilon=epsilon,
                             stepsize=2. / 255,
                             iterations=args.pgd_steps,
                             random_start=True)

        if np.any(adversarial == None):
            # Non-adversarial
            adversarial = image
            target_label = clean_label

        adv_pred_labels[i] = np.argmax(fmodel.predictions(adversarial))
        clean_labels[i] = clean_label
        target_labels[i] = target_label
        clean_pred_labels[i] = np.argmax(fmodel.predictions(image))

        print('Iter, Clean, Clean_pred, Adv, Adv_pred: ', i, clean_label,
              clean_pred_labels[i], target_label, adv_pred_labels[i])

        # measure accuracy and update average
        acc1 = 100. * np.mean(clean_label == adv_pred_labels[i])
        top1.update(acc1, 1)

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        if i % args.print_freq == 0:
            progress.display(i)

    print('* Acc@1 {top1.avg:.3f} '.format(top1=top1))

    return top1.avg
コード例 #11
0
def random_targeted(attack_fn, class_start: int, class_end: int):
    return partial(
        attack_fn,
        criterion=TargetClass(
            target_class=random.randint(class_start, class_end)),
    )
コード例 #12
0
def start_attack(foolmodel, image, label, threshold=90):
    advs = []

    for i in range(config.exp['label_num']):
        if i is not label:
            # 希望模型能将图片识别成i ~定向
            criterion = TargetClass(i)
            # 提供三种主流的对抗攻击方式 {基于决策的,基于梯度的,基于分数的}
            # Decision-based attacks
            attack1_1 = foolbox.attacks.AdditiveUniformNoiseAttack(
                foolmodel, criterion=criterion)
            attack1_2 = foolbox.attacks.AdditiveGaussianNoiseAttack(
                foolmodel, criterion=criterion)
            # Gradient-based attacks
            attack2 = foolbox.attacks.FGSM(foolmodel, criterion=criterion)
            attack3 = foolbox.attacks.SaliencyMapAttack(foolmodel,
                                                        criterion=criterion)
            # Score-based attacks 不采用,数据都很差 评分都很低
            # attack4 = foolbox.attacks.LocalSearchAttack(foolmodel, criterion=criterion)
            # 使用第一种第二种攻击方案
            for eps in range(100, 1000, 100):
                # 1. 使用Decision-based attacks
                print(eps)
                adv1_1 = attack1_1(image, label, epsilons=eps)
                adv1_2 = attack1_2(image, label, epsilons=eps)
                if adv1_1 is not None and cal_score(image,
                                                    adv1_1) >= threshold:
                    # 将高于threshold的数据保留下来,高的不需要保留
                    advs.append(adv1_1)
                if adv1_2 is not None and cal_score(image,
                                                    adv1_2) >= threshold:
                    # 将高于threshold的数据保留下来,高的不需要保留
                    advs.append(adv1_2)

            # 使用第三种攻击方案
            eps_set = [10, 100, 200, 300, 500, 800]
            temp_score = 0
            for eps in eps_set:
                print(eps)
                # 2. 使用Gradient-based attacks
                adv2 = attack2(image, label, epsilons=eps)
                if adv2 is not None:
                    score = cal_score(image, adv2)
                    if score >= threshold and temp_score != score:
                        advs.append(adv2)
                        temp_score = score

            # 使用第四种攻击方案
            temp_score = 0
            for theta in np.arange(0.1, 1.1, 0.1):
                print(theta)
                # 2. 使用Gradient-based attacks
                adv3 = attack3(image, label, theta=theta)
                if adv3 is not None:
                    score = cal_score(image, adv3)
                    if score >= threshold and temp_score != score:
                        advs.append(adv3)
                        temp_score = score

    # 返回生成的攻击样本,原始标签以及对抗之后的标签,用于保存
    # labels = foolmodel.batch_predictions(np.array(advs))
    # labels = np.argmax(labels, axis=1)
    # original_labels = np.zeros(shape=(len(labels),))
    # original_labels[:] = label

    return np.array(advs)
コード例 #13
0
def attack(algorithm,
           dataset,
           targeted,
           norm='l2',
           num=50,
           stopping_criteria=None,
           query_limit=40000,
           start_from=0,
           gpu=0):

    os.environ["CUDA_VISIBLE_DEVICES"] = str(gpu)

    print("Attacking:".format(num))
    print("    Number of samples - {0}".format(num))
    print("    Dataset - {0}".format(dataset.upper()))
    print("    Targeted - {0}".format(targeted))
    print("    Norm - {0}".format(norm))
    print("    Query Limit - {0}".format(query_limit))
    print("    GPU - {0}".format(gpu))
    print()
    if stopping_criteria is not None:
        print("    Stopping criteria - {0}".format(stopping_criteria))
    if start_from > 0:
        print("    Start from {0}".format(start_from))

    if dataset == 'mnist':
        net = MNIST()
        net.cuda()
        net = torch.nn.DataParallel(net, device_ids=[0])
        load_model(net, '../mnist_gpu.pt')
        train_loader, test_loader, train_dataset, test_dataset = load_mnist_data(
        )
    elif dataset == 'cifar':
        net = CIFAR10()
        net.cuda()
        net = torch.nn.DataParallel(net, device_ids=[0])
        load_model(net, '../cifar10_gpu.pt')
        train_loader, test_loader, train_dataset, test_dataset = load_cifar10_data(
        )
    elif dataset == 'imagenet':
        net = models.__dict__["resnet50"](pretrained=True)
        net.cuda()
        net = torch.nn.DataParallel(net, device_ids=[0])
        train_loader, test_loader, train_dataset, test_dataset = load_imagenet_data(
        )
    else:
        print("Invalid dataset")
        return

    net.eval()
    model = net.module if torch.cuda.is_available() else net
    #amodel = PytorchModel(model, bounds=[0,1], num_classes=10)

    fmodel = foolbox.models.PyTorchModel(model, bounds=[0, 1], num_classes=10)
    #if targeted:
    #    criterion = TargetClass(target)
    #    attack = foolbox.attacks.BoundaryAttack(fmodel,criterion)
    #else:
    #    attack = foolbox.attacks.BoundaryAttack(fmodel)

    print("using BoundaryAttack from foolbox")
    #print("Invalid algorithm")

    np.random.seed(0)
    seeds = np.random.randint(10000, size=[2 * num])
    count = 0
    for i, (xi, yi) in enumerate(test_loader):
        if i < start_from:
            continue
        if count == num:
            break
        image, label = xi[0].numpy(), yi.item()
        seed_index = i - start_from
        np.random.seed(seeds[seed_index])
        target = np.random.randint(10) * torch.ones(
            1, dtype=torch.long).cuda() if targeted else None
        print("Attacking Source: {0} Target: {1} Seed: {2} Number {3}".format(
            yi.item(), target, seeds[seed_index], i))

        if targeted:
            target = target.item()
            criterion = TargetClass(target)
            attack = foolbox.attacks.BoundaryAttack(fmodel, criterion)
            for i, (xi, yi) in enumerate(train_loader):
                if i == 1:
                    break
                #print(yi, target)
                index = (yi == target).nonzero()
                image_t = xi[index[0]][0]
            image_t = image_t.numpy()
            adv = attack(image,
                         label,
                         iterations=6000,
                         verbose=False,
                         unpack=False,
                         log_every_n_steps=100,
                         starting_point=image_t)
        else:
            attack = foolbox.attacks.BoundaryAttack(fmodel)
            adv = attack(image,
                         label,
                         iterations=6000,
                         verbose=False,
                         unpack=False,
                         log_every_n_steps=100)
        if adv.image is None:
            continue
        dis = LA.norm(adv.image - image)
        #print("Norm L2 and queries of image {} is {} and {}".format(dis, adv._total_prediction_calls))
        print(
            "adversarial Example Found Successfully: distortion {} target {} queries {}"
            .format(dis, np.argmax(fmodel.predictions(adv.image)),
                    adv._total_prediction_calls))
        #adv, dist = attack(xi.cuda(), yi.cuda(), target=target,
        #                   seed=seeds[seed_index], query_limit=query_limit)
        #if dist > 1e-8 and dist != float('inf'):
        #    count += 1
        print()
コード例 #14
0
                                         global_threshold_lbp_linear)

        models = [model_lbp_rbf, model_lbp_linear]
        adv_models = [adv_model_lbp_rbf, adv_model_lbp_linear]
        modelnames = ['model_lbp_rbf', 'model_lbp_linear']
        thresholds = [global_threshold_lbp, global_threshold_lbp_linear]

        genuine_idx, forgery_idx, skforgery_idx = selected_images[user]

        # Attack genuine images
        if genuine_idx != -1:
            selected_genuine = x_test[genuine_idx].squeeze()
            for original_m, adv_m, mname, t in zip(models, adv_models,
                                                   modelnames, thresholds):
                assert original_m.predictions(selected_genuine)[1] == 1
                atk = BoundaryAttack(adv_m, TargetClass(0))

                print('Running Boundary attack on {}'.format(mname))
                boundary_result = atk(selected_genuine.astype(np.float32),
                                      1,
                                      iterations=1000,
                                      verbose=False)

                if boundary_result is not None:
                    results_genuine.append(
                        (user, mname, 'genuine', 'decision', genuine_idx,
                         boundary_result,
                         rmse(boundary_result - selected_genuine),
                         original_m.predict_score(boundary_result),
                         original_m.predictions(boundary_result)[0]))
                else:
コード例 #15
0
ファイル: main_physical.py プロジェクト: machanic/QEBA
    #p_gen = None
    #p_gen = PerturbGenerator(preprocess=((0,1,2),mean,std))
    #p_gen = PerturbGenerator()
    #p_gen = BigGANGenerator()
    #p_gen = UNet(n_channels=3)
    #p_gen.load_state_dict(torch.load('unet.model', map_location='cpu'))
    #p_gen = ResizeGenerator()
    p_gen = DCTGenerator()
    #rvs = p_gen.generate_ps(src_image, 10, level=3)
    #print (rvs)
    #print (rvs.shape)
    #assert 0

    #attack = foolbox.attacks.BoundaryAttackPlusPlus(fmodel)
    #attack = foolbox.attacks.BoundaryAttackPlusPlus(fmodel, criterion=TargetClass(src_label))
    attack = foolbox.attacks.BAPP_physical(fmodel, criterion=TargetClass(src_label))
    adv = attack(tgt_image, tgt_label, starting_point = src_image, iterations=50, stepsize_search='geometric_progression', verbose=True, unpack=False, max_num_evals=100, initial_num_evals=100, internal_dtype=np.float32, rv_generator = p_gen, atk_level=args.atk_level, mask=mask)

    #Final adv
    adversarial = adv.perturbed
    adv_label = np.argmax(fmodel.forward_one(adversarial))
    ret1 = tgt_image
    ret2 = adversarial
    print ("Total calls:", adv._total_prediction_calls)
    print ("Final MSE between Target and Adv:", MSE(ret1, ret2))
    print ("Source label: %d; Target label: %d; Adv label: %d"%(src_label, tgt_label, adv_label))

    print (attack.logger)
    with open('BAPP_result/attack_%s.log'%args.suffix, 'w') as outf:
        json.dump(attack.logger, outf)
コード例 #16
0
    for image, label in val_loader_foolbox:
        label = id2id[label.item()]
        prep_image = (image - imagenet_mean) / imagenet_std
        prep_image = prep_image.cuda()
        image = image[0].numpy()

        # PGD configuration
        wrapped_model = wrapper(model, prep_image, attack_size, (x, y),
                                clip_fn, a, b)
        wrapped_model.eval()
        print('image {}, current location: {}'.format(img_idx, (x, y)))
        fmodel = foolbox.models.PyTorchModel(wrapped_model,
                                             bounds=(0, 1),
                                             num_classes=1000,
                                             preprocessing=(mean, std))
        criterion = TargetClass(targeted_class)
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            attack = attack_alg(fmodel,
                                criterion=criterion,
                                distance=foolbox.distances.Linfinity)

        subimg = get_subimg(image, (x, y), attack_size)
        adversarial = attack(subimg,
                             label,
                             iterations=max_iter,
                             epsilon=1.,
                             stepsize=0.01,
                             random_start=True,
                             return_early=False,
                             binary_search=False)
コード例 #17
0
ファイル: conftest.py プロジェクト: victor-dang/foolbox
def bn_targeted_criterion():
    label = bn_label()
    assert label in [0, 1]
    return TargetClass(1 - label)
コード例 #18
0
            x_train.shape[1:], dropout, dropout)
    elif args.experiment_type == "six_layer_dnn":
        kmodel = neural_networks.asymmetric_six_layer_nn_foolbox(
            x_train.shape[1:], dropout, dropout)
    elif args.experiment_type == "VGG":
        kmodel = convolutional.mini_VGG_foolbox(dropout, dropout, 0, "mnist")
    elif args.experiment_type == "leNet5":
        kmodel = convolutional.leNet_cnn_foolbox(dropout, dropout, "mnist")

    kmodel.fit(x_train, y_train, epochs=10, batch_size=128)
    # kmodel.fit(x_train, y_train, epochs=50, batch_size=128)

    preds = np.argmax(kmodel.predict(x_test), axis=1)
    x_sample = np.take(x_test, ones, axis=0)[:5]
    y_sample = np.array([1 for x in x_sample])
    y_target = np.array([to_one_hot(7) for _ in x_sample])

    attack = CarliniWagnerL2Attack(kmodel, TargetClass(7))
    # attack = RandomPGD(kmodel, TargetClass(7))

    adversarial = attack(x_sample,
                         y_sample,
                         binary_search_steps=5,
                         max_iterations=600)
    # adversarial = attack(x_sample, y_sample, iterations=30)

    print(kmodel.predict(adversarial))

    # For those samples for which the L2 method does not produce an adversarial sample within the attack parameters,
    # we exclude them from the perturbation evaluation.