def test_lasagne_model(num_classes): bounds = (0, 255) channels = num_classes def mean_brightness_net(images): logits = GlobalPoolLayer(images) return logits images_var = T.tensor4('images', dtype='float32') images = InputLayer((None, channels, 5, 5), images_var) logits = mean_brightness_net(images) model = LasagneModel(images, logits, bounds=bounds) test_images = np.random.rand(2, channels, 5, 5).astype(np.float32) test_label = 7 assert model.batch_predictions(test_images).shape \ == (2, num_classes) test_logits = model.predictions(test_images[0]) assert test_logits.shape == (num_classes, ) test_gradient = model.gradient(test_images[0], test_label) assert test_gradient.shape == test_images[0].shape np.testing.assert_almost_equal( model.predictions_and_gradient(test_images[0], test_label)[0], test_logits) np.testing.assert_almost_equal( model.predictions_and_gradient(test_images[0], test_label)[1], test_gradient) assert model.num_classes() == num_classes
def test_lasagne_gradient(num_classes): bounds = (0, 255) channels = num_classes def mean_brightness_net(images): logits = GlobalPoolLayer(images) return logits images_var = T.tensor4('images', dtype='float32') images = InputLayer((None, channels, 5, 5), images_var) logits = mean_brightness_net(images) preprocessing = (np.arange(num_classes)[None, None], np.random.uniform(size=(5, 5, channels)) + 1) model = LasagneModel(images, logits, preprocessing=preprocessing, bounds=bounds) epsilon = 1e-2 np.random.seed(23) test_image = np.random.rand(channels, 5, 5).astype(np.float32) test_label = 7 _, g1 = model.predictions_and_gradient(test_image, test_label) l1 = model._loss_fn(test_image[None] - epsilon / 2 * g1, [test_label])[0] l2 = model._loss_fn(test_image[None] + epsilon / 2 * g1, [test_label])[0] # make sure that gradient is numerically correct np.testing.assert_array_almost_equal(1e4 * (l2 - l1), 1e4 * epsilon * np.linalg.norm(g1)**2, decimal=1)
def test_lasagne_model(num_classes): bounds = (0, 255) channels = num_classes def mean_brightness_net(images): logits = GlobalPoolLayer(images) return logits images_var = T.tensor4('images', dtype='float32') images = InputLayer((None, channels, 5, 5), images_var) logits = mean_brightness_net(images) model = LasagneModel( images, logits, bounds=bounds) test_images = np.random.rand(2, channels, 5, 5).astype(np.float32) test_label = 7 assert model.batch_predictions(test_images).shape \ == (2, num_classes) test_logits = model.predictions(test_images[0]) assert test_logits.shape == (num_classes,) test_gradient = model.gradient(test_images[0], test_label) assert test_gradient.shape == test_images[0].shape np.testing.assert_almost_equal( model.predictions_and_gradient(test_images[0], test_label)[0], test_logits) np.testing.assert_almost_equal( model.predictions_and_gradient(test_images[0], test_label)[1], test_gradient) assert model.num_classes() == num_classes
def test_lasagne_gradient(num_classes): bounds = (0, 255) channels = num_classes def mean_brightness_net(images): logits = GlobalPoolLayer(images) return logits images_var = T.tensor4('images', dtype='float32') images = InputLayer((None, channels, 5, 5), images_var) logits = mean_brightness_net(images) preprocessing = (np.arange(num_classes)[:, None, None], np.random.uniform(size=(channels, 5, 5)) + 1) model = LasagneModel( images, logits, preprocessing=preprocessing, bounds=bounds) # theano and lasagne calculate the cross-entropy from the probbilities # rather than combining softmax and cross-entropy calculation; they # therefore have lower numerical accuracy epsilon = 1e-3 np.random.seed(23) test_image = np.random.rand(channels, 5, 5).astype(np.float32) test_label = 7 _, g1 = model.predictions_and_gradient(test_image, test_label) l1 = model._loss_fn(test_image[None] - epsilon / 2 * g1, [test_label])[0] l2 = model._loss_fn(test_image[None] + epsilon / 2 * g1, [test_label])[0] assert 1e5 * (l2 - l1) > 1 # make sure that gradient is numerically correct np.testing.assert_array_almost_equal( 1e5 * (l2 - l1), 1e5 * epsilon * np.linalg.norm(g1)**2, decimal=1)
def test_lasagne_gradient(num_classes): bounds = (0, 255) channels = num_classes def mean_brightness_net(images): logits = GlobalPoolLayer(images) return logits images_var = T.tensor4('images', dtype='float32') images = InputLayer((None, channels, 5, 5), images_var) logits = mean_brightness_net(images) preprocessing = (np.arange(num_classes)[None, None], np.random.uniform(size=(5, 5, channels)) + 1) model = LasagneModel( images, logits, preprocessing=preprocessing, bounds=bounds) epsilon = 1e-2 np.random.seed(23) test_image = np.random.rand(channels, 5, 5).astype(np.float32) test_label = 7 _, g1 = model.predictions_and_gradient(test_image, test_label) l1 = model._loss_fn(test_image[None] - epsilon / 2 * g1, [test_label])[0] l2 = model._loss_fn(test_image[None] + epsilon / 2 * g1, [test_label])[0] # make sure that gradient is numerically correct np.testing.assert_array_almost_equal( 1e4 * (l2 - l1), 1e4 * epsilon * np.linalg.norm(g1)**2, decimal=1)