コード例 #1
0
class TestConvergencePlot(unittest.TestCase):

    def setUp(self):
        self.analysis_model = AnalysisModel()
        self.data_view = SamplingDataView(analysis_model=self.analysis_model)
        self.plot = self.data_view.sampling_plot
        self.analysis_model.notify(("x", "y", "E"))

    def check_update_is_requested_and_apply(self):
        # check
        self.assertTrue(self.plot.update_required)
        self.assertTrue(self.plot.plot_updater.active)
        # update
        self.plot._update_displayable_value_names()
        self.plot._update_plot()
        self.plot.update_required = False

    def add_data_points(self):
        # non monotonic convergence
        for datum in [
                (1, 3, 8), (2, 5, 7.7), (3, 2.6, 7.6), (4, 2.5, 7.62),
                (5, 2.47, 7.543), (6, 2.465, 7.54)]:
            self.analysis_model.notify(datum)
        self.check_update_is_requested_and_apply()

    def test_init(self):
        self.analysis_model.notify((1.0, 1.0, 1.0))
        self.plot._update_displayable_value_names()
        self.assertIsInstance(self.plot._axis, LinePlot)
        self.assertEqual('iteration', self.plot._plot.x_axis.title)

    def test_resize_plot(self):
        ranges = self.plot.recenter_plot()
        self.assertEqual(ranges, (0.0, 1.0, -0.1, 1))
        self.add_data_points()
        self.plot._update_plot()

        ranges = self.plot._get_plot_range()
        # the second value for y (5) shouldn't contribute to the running min.
        self.assertEqual(3.1, ranges[3])
        self.assertEqual('iteration', self.plot._plot.x_axis.title)

    def test_change_variable(self):
        self.add_data_points()
        self.plot._update_plot()
        self.assertListEqual(
            [3, 3, 2.6, 2.5, 2.47, 2.465],
            self.plot._custom_data_array)

        self.plot.y = "E"
        self.assertListEqual(
            [8, 7.7, 7.6, 7.6, 7.543, 7.54],
            self.plot._custom_data_array)
コード例 #2
0
    def test_notify(self):
        with mock.patch.object(AnalysisModel, "_add_header") as mock_header:
            model = AnalysisModel()
            model.notify(None)
        mock_header.assert_called_once()

        with mock.patch.object(
                AnalysisModel,
                "_add_header") as mock_header, mock.patch.object(
                    AnalysisModel,
                    "_add_metadata") as mock_metadata, mock.patch.object(
                        AnalysisModel, "_add_data") as mock_data:
            model = AnalysisModel()
            model.notify(None)
            # This line is necessary because the header must be set
            # in order to add data to the model.
            model.header = ("", )
            model.notify(None, metadata=True)
            model.notify(None)
        mock_header.assert_called_once()
        mock_metadata.assert_called_once()
        mock_data.assert_called_once()
コード例 #3
0
class TestResultsTable(unittest.TestCase):
    def setUp(self):
        self.analysis_model = AnalysisModel()

        self.analysis_model.header = ["x", "y", "compound"]
        self.analysis_model.notify((2.1, 56, "CO"))
        self.analysis_model.notify((1.23, 51.2, "CO2"))
        self.results_table = ResultsTable(analysis_model=self.analysis_model)

    def test_columns(self):
        self.assertEqual(len(self.results_table.columns), 3)
        self.assertEqual(self.results_table.columns[2].label, "compound")

    def test_value(self):
        column_2 = self.results_table.columns[2]
        row_1 = self.analysis_model.evaluation_steps[1]
        self.assertEqual(column_2.get_value(row_1), "CO2")

    def test_append_evaluation_steps(self):
        self.analysis_model.notify((1.5, 50, "CO"))
        self.assertEqual(self.results_table.rows[2], (1.5, 50, "CO"))

    def test_selection(self):
        # From table to the model
        self.assertIsNone(self.analysis_model.selected_step_indices)

        self.results_table._selected_rows = [(2.1, 56, "CO")]
        self.assertEqual(self.analysis_model.selected_step_indices, [0])

        self.results_table._selected_rows = [(1.23, 51.2, "CO2")]
        self.assertEqual(self.analysis_model.selected_step_indices, [1])

        self.results_table._selected_rows = []
        self.assertIsNone(self.analysis_model.selected_step_indices)

        # From model to the table
        self.analysis_model.selected_step_indices = [1]
        self.assertEqual(self.results_table._selected_rows,
                         [(1.23, 51.2, "CO2")])

        self.analysis_model.selected_step_indices = [0, 1]
        self.assertEqual(
            self.results_table._selected_rows,
            [(2.1, 56, "CO"), (1.23, 51.2, "CO2")],
        )

        self.analysis_model.selected_step_indices = None
        self.assertEqual(self.results_table._selected_rows, [])
コード例 #4
0
class TestAnalysisModel(TestCase):
    def setUp(self):
        self.model = AnalysisModel()
        self.header = ("a", "b", "c")
        self.data = ((1, 2, 3), (4, 5, 6))
        self.metadata = ({}, {'d': 10})
        self.state_dict = {
            "header": self.header,
            "1": {
                'data': self.data[0],
                'metadata': self.metadata[0]
            },
            "2": {
                'data': self.data[1],
                'metadata': self.metadata[1]
            }
        }

    def test_initialize(self):
        self.assertEqual(tuple(), self.model.header)
        self.assertFalse(self.model.export_enabled)
        self.assertFalse(self.model._export_enabled)
        self.assertEqual([], self.model.evaluation_steps)
        self.assertEqual([], self.model._evaluation_steps)
        self.assertDictEqual(self.model._row_data, {})

    def test__add_header(self):
        self.model._add_header(self.header)
        self.assertTupleEqual(self.header, self.model.header)
        self.assertDictEqual(dict.fromkeys(self.header), self.model._row_data)

        wrong_header = 1
        log_error = (
            f"The Header of the AnalysisModel can't be defined by "
            f"the {wrong_header}. A list or tuple of strings is required.")
        with LogCapture() as capture:
            with self.assertRaises(TraitError):
                self.model._add_header(wrong_header)
        capture.check(
            ("force_wfmanager.model.analysis_model", "ERROR", log_error))

    def test_header_update(self):
        self.model.from_json(self.state_dict)

        self.assertTupleEqual(self.model.header, self.header)
        self.model.header = ("new", )
        self.assertTupleEqual(self.model.header, ("new", ))
        self.assertEqual([], self.model.evaluation_steps)
        self.assertEqual([], self.model.step_metadata)

    def test__add_cell(self):
        self.model._add_header(self.header)

        self.model._add_cell(label="a", value="1")
        self.assertEqual("1", self.model._row_data["a"])
        self.assertIsNone(self.model._row_data["b"])
        self.assertIsNone(self.model._row_data["c"])

        label, value = "d", "2"
        log_warning = (f"The AnalysisModel does not have the {label} column."
                       f"The value {value} has not been added to the table.")
        with LogCapture() as capture:
            self.model._add_cell(label=label, value=value)
        capture.check((
            "force_wfmanager.model.analysis_model",
            "WARNING",
            log_warning,
        ))
        self.assertEqual("1", self.model._row_data["a"])
        self.assertIsNone(self.model._row_data["b"])
        self.assertIsNone(self.model._row_data["c"])

    def test__add_cells(self):
        self.model._add_header(self.header)

        data = []
        self.model._add_cells(data)
        self.assertIsNone(self.model._row_data["a"])
        self.assertIsNone(self.model._row_data["b"])
        self.assertIsNone(self.model._row_data["c"])

        data = (1, 2)
        self.model._add_cells(data)
        self.assertEqual(1, self.model._row_data["a"])
        self.assertEqual(2, self.model._row_data["b"])
        self.assertIsNone(self.model._row_data["c"])

        data = (1, 2, 3, 4)
        self.model._add_cells(data)
        self.assertEqual(1, self.model._row_data["a"])
        self.assertEqual(2, self.model._row_data["b"])
        self.assertEqual(3, self.model._row_data["c"])

    def test_finalize_row(self):
        self.model._add_header(self.header)
        data = (1, 2, 3)
        self.model._add_cells(data)

        self.model._finalize_row()
        self.assertEqual(1, len(self.model.evaluation_steps))
        self.assertEqual(1, len(self.model.step_metadata))

        self.assertTupleEqual(data, self.model.evaluation_steps[0])
        self.assertDictEqual({}, self.model.step_metadata[0])

        self.assertDictEqual(self.model._row_data,
                             self.model._row_data_default())
        self.assertDictEqual(self.model._row_metadata,
                             self.model._row_metadata_default())

        data = (1, 2)
        self.model._add_cells(data)
        self.model._add_metadata({'extra': 7})

        self.model._finalize_row()
        self.assertEqual(2, len(self.model.evaluation_steps))
        self.assertEqual(2, len(self.model.step_metadata))

        self.assertTupleEqual((1, 2, None), self.model.evaluation_steps[1])
        self.assertDictEqual({'extra': 7}, self.model.step_metadata[1])

        self.assertDictEqual(self.model._row_data,
                             self.model._row_data_default())
        self.assertDictEqual(self.model._row_metadata,
                             self.model._row_metadata_default())

    def test__add_data(self):
        with mock.patch.object(AnalysisModel, "_add_cell") as mock_cell:
            model = AnalysisModel()
            model._add_data({"name": "value"})
        mock_cell.assert_called_with("name", "value")

        with mock.patch.object(AnalysisModel,
                               "_add_cells") as mock_cells, mock.patch.object(
                                   AnalysisModel, "_finalize_row"):
            model = AnalysisModel()

            model._add_data(["data", "entries"])
        mock_cells.assert_called_with(["data", "entries"])

        self.model._add_header(self.header)
        self.model._add_data({"a": 1})
        self.model._add_data({"c": 2})
        self.model._add_data([3, 4])
        self.assertEqual(1, len(self.model.evaluation_steps))
        self.assertTupleEqual((3, 4, 2), self.model.evaluation_steps[0])
        self.assertDictEqual(self.model._row_data,
                             self.model._row_data_default())

    def test__add_metadata(self):
        self.model._add_metadata({"a": 1})
        self.assertDictEqual({"a": 1}, self.model._row_metadata)

        self.model._add_metadata({"a": 1, "c": 2})
        self.assertDictEqual({"a": 1, "c": 2}, self.model._row_metadata)

        self.model._add_metadata([(3, 2, 5)])
        self.assertDictEqual({"a": 1, "c": 2}, self.model._row_metadata)

    def test__add_evaluation_step(self):
        with self.assertRaisesRegex(
                ValueError,
                "Cannot add evaluation step to an empty Analysis model"):
            self.model._add_evaluation_step(None)

        self.model.notify(["column"])
        step = (1, 2)
        error = ("Size of evaluation step is incompatible with the length of "
                 "the header.")
        with self.assertRaisesRegex(ValueError, error):
            self.model._add_evaluation_step(step)

        step = (1, )
        self.model._add_evaluation_step(step)
        self.assertEqual(1, len(self.model.evaluation_steps))
        self.assertTupleEqual(self.model.evaluation_steps[0], step)
        self.assertTrue(self.model.export_enabled)

    def test_notify(self):
        with mock.patch.object(AnalysisModel, "_add_header") as mock_header:
            model = AnalysisModel()
            model.notify(None)
        mock_header.assert_called_once()

        with mock.patch.object(
                AnalysisModel,
                "_add_header") as mock_header, mock.patch.object(
                    AnalysisModel,
                    "_add_metadata") as mock_metadata, mock.patch.object(
                        AnalysisModel, "_add_data") as mock_data:
            model = AnalysisModel()
            model.notify(None)
            # This line is necessary because the header must be set
            # in order to add data to the model.
            model.header = ("", )
            model.notify(None, metadata=True)
            model.notify(None)
        mock_header.assert_called_once()
        mock_metadata.assert_called_once()
        mock_data.assert_called_once()

    def test_column(self):
        self.model.from_json(self.state_dict)

        column_by_id = self.model.column(0)
        column_by_label = self.model.column("a")
        self.assertListEqual(column_by_id, column_by_label)
        self.assertListEqual(column_by_label, [1, 4])

        column_by_id = self.model.column(-1)
        column_by_label = self.model.column("c")
        self.assertListEqual(column_by_id, column_by_label)
        self.assertListEqual(column_by_label, [3, 6])

        error = ("Column of the AnalysisModel with label 2"
                 " doesn't exist. The label must be a string or int.")
        with self.assertRaisesRegex(ValueError, error):
            self.model.column("2")

        error = ("Column of the AnalysisModel with label 100"
                 " doesn't exist. The label must be a string or int.")
        with self.assertRaisesRegex(ValueError, error):
            self.model.column(100)

    def test_is_empty(self):
        self.assertTrue(self.model.is_empty)
        self.model.from_json(self.state_dict)

        self.assertFalse(self.model.is_empty)

    def test___getstate__(self):
        self.model.notify(self.header)
        for entry, meta in zip(self.data, self.metadata):
            self.model.notify(meta, metadata=True)
            self.model.notify(entry)

        state = self.model.__getstate__()
        self.assertDictEqual(
            {
                "header": self.header,
                1: {
                    'data': self.data[0],
                    'metadata': self.metadata[0]
                },
                2: {
                    'data': self.data[1],
                    'metadata': self.metadata[1]
                }
            }, state)

        with mock.patch.object(AnalysisModel, "__getstate__") as mock_getstate:
            AnalysisModel().to_json()
        mock_getstate.assert_called_once()

    def test_json(self):
        error = ("AnalysisModel can't be instantiated from a data dictionary"
                 " that does not contain a header.")
        with LogCapture() as capture:
            with self.assertRaisesRegex(KeyError, error):
                AnalysisModel().from_json({
                    "1": {
                        'data': self.data[0],
                        'metadata': self.metadata[0]
                    },
                    "2": {
                        'data': self.data[1],
                        'metadata': self.metadata[1]
                    }
                })
        capture.check((
            "force_wfmanager.model.analysis_model",
            "ERROR",
            "AnalysisModel can't be instantiated from a data dictionary "
            "that does not contain a header.",
        ))

        with mock.patch.object(AnalysisModel, "clear") as mock_clear:
            model = AnalysisModel()
            model.from_json(self.state_dict)
        mock_clear.assert_called_once()

        self.model.from_json(self.state_dict)
        self.assertTupleEqual(self.model.header, self.header)
        self.assertEqual(2, len(self.model.evaluation_steps))
        self.assertEqual(2, len(self.model.step_metadata))
        self.assertTupleEqual(self.data[0], self.model.evaluation_steps[0])
        self.assertDictEqual(self.metadata[0], self.model.step_metadata[0])
        self.assertTupleEqual(self.data[1], self.model.evaluation_steps[1])
        self.assertDictEqual(self.metadata[1], self.model.step_metadata[1])

        tmp_file = tempfile.NamedTemporaryFile()
        filename = tmp_file.name
        self.model.dump_json(filename)
        with open(filename) as f:
            json_data = json.load(f)
        self.assertDictEqual(
            {
                "header": list(self.header),
                "1": {
                    'data': list(self.data[0]),
                    'metadata': self.metadata[0]
                },
                "2": {
                    'data': list(self.data[1]),
                    'metadata': self.metadata[1]
                }
            }, json_data)

        self.model._export_enabled = False
        self.assertFalse(self.model.dump_json(None))

        state_dict = {
            "header": self.header,
            "1": {
                'data': self.data[0],
                'metadata': self.metadata[0]
            },
            "3": {
                'data': self.data[1],
                'metadata': self.metadata[1]
            }
        }
        with LogCapture() as capture:
            AnalysisModel().from_json(state_dict)
        capture.check((
            "force_wfmanager.model.analysis_model",
            "WARNING",
            "Can't find a row with index 2. This index will "
            "be skipped in the AnalysisModel.",
        ))

        with self.subTest("Check deprecated formats"):
            # TODO: This test can be removed when issue #414
            #  is resolved
            state_dict = {"header": self.header, "1": list(self.data[0])}
            with LogCapture() as capture:
                model = AnalysisModel()
                model.from_json(state_dict)
            capture.check((
                "force_wfmanager.model.analysis_model",
                "WARNING",
                "Project file format is deprecated and will"
                " be removed in version 0.7.0",
            ))
            self.assertDictEqual(
                {
                    "header": self.header,
                    1: {
                        "data": self.data[0],
                        "metadata": {}
                    }
                }, model.__getstate__())

    def test_write_csv(self):
        self.model.from_json(self.state_dict)
        tmp_file = tempfile.NamedTemporaryFile()
        filename = tmp_file.name
        self.model.dump_csv(filename)

        with open(filename) as f:
            csv_data = f.read()
        self.assertEqual("a,b,c\n1,2,3\n4,5,6\n", csv_data)

        self.model._export_enabled = False
        self.assertFalse(self.model.dump_csv(None))

    def test_write(self):
        with mock.patch.object(AnalysisModel, "dump_csv") as mock_csv:
            AnalysisModel().write("filename.csv")
        mock_csv.assert_called_with("filename.csv", mode="w")

        with mock.patch.object(AnalysisModel, "dump_json") as mock_json:
            AnalysisModel().write("filename.json")
        mock_json.assert_called_with("filename.json", mode="w")

        error = "AnalysisModel can only write to .json or .csv formats."
        with self.assertRaisesRegex(IOError, error):
            AnalysisModel().write("filename.format")

    def test_clear(self):
        self.model.notify(self.header)
        for entry, meta in zip(self.data, self.metadata):
            self.model.notify(meta, metadata=True)
            self.model.notify(entry)

        self.model.clear_steps()
        self.assertFalse(self.model.export_enabled)
        self.assertEqual([], self.model.evaluation_steps)
        self.assertEqual([], self.model.step_metadata)
        self.assertTupleEqual(self.model.header, self.header)

        self.model.notify(self.header)
        for entry in self.data:
            self.model.notify(entry)

        self.model.clear()
        self.assertFalse(self.model.export_enabled)
        self.assertEqual([], self.model.evaluation_steps)
        self.assertEqual([], self.model.step_metadata)
        self.assertTupleEqual(self.model.header, ())

    def test_selected_step_indices(self):
        self.assertIsNone(self.model.selected_step_indices)

        self.model.notify(self.header)
        for entry in self.data:
            self.model.notify(entry)

        self.assertIsNone(self.model.selected_step_indices)
        self.model.selected_step_indices = [1]
        self.assertListEqual(self.model.selected_step_indices, [1])
        self.model.selected_step_indices = [1, 2]
        self.assertListEqual(self.model.selected_step_indices, [1, 2])
        error = ("Invalid value for selection index 3. "
                 "It must be a positive Int less or equal to 1")
        with self.assertRaisesRegex(ValueError, error):
            self.model.selected_step_indices = [1, 3]
        error = ("Invalid value for selection index -1. "
                 "It must be a positive Int less or equal to 1")
        with self.assertRaisesRegex(ValueError, error):
            self.model.selected_step_indices = [-1]