コード例 #1
0
def test_foreshadow_integration_data_cleaner_can_drop(filename, problem_type,
                                                      X_start, X_end, target,
                                                      tmpdir):
    from foreshadow.foreshadow import Foreshadow
    import pandas as pd
    import numpy as np
    from sklearn.model_selection import train_test_split

    np.random.seed(1337)

    data_path = get_file_path("data", filename)

    data = pd.read_csv(data_path)
    # local_file_folder = "examples"
    # data = pd.read_csv("/".join([local_file_folder, filename]))

    X_df = data.loc[:, X_start:X_end]
    y_df = data.loc[:, target]

    X_train, X_test, y_train, y_test = train_test_split(X_df,
                                                        y_df,
                                                        test_size=0.2)

    from foreshadow.estimators import AutoEstimator

    estimator = AutoEstimator(
        problem_type=problem_type,
        auto="tpot",
        estimator_kwargs={"max_time_mins": 1},
    )

    shadow = Foreshadow(estimator=estimator, problem_type=problem_type)

    pickled_fitted_pipeline_location = tmpdir.join("fitted_pipeline.p")
    shadow.fit(X_train, y_train)
    shadow.pickle_fitted_pipeline(pickled_fitted_pipeline_location)

    import pickle

    with open(pickled_fitted_pipeline_location, "rb") as fopen:
        pipeline = pickle.load(fopen)

    # If there are new empty columns in the test set, the program should
    # not fail.
    X_test[X_start] = np.nan
    score1 = shadow.score(X_test, y_test)
    score2 = pipeline.score(X_test, y_test)

    import unittest

    assertions = unittest.TestCase("__init__")
    # given the randomness of the tpot algorithm and the short run
    # time we configured, there is no guarantee the performance can
    # converge. The test here aims to evaluate if both cases have
    # produced a reasonable score and the difference is small.
    # assert score1 > 0.76 and score2 > 0.76
    assertions.assertAlmostEqual(score1, score2, places=2)
コード例 #2
0
def test_foreshadow_pickling_and_unpickling_unfitted(tmpdir):
    from foreshadow.foreshadow import Foreshadow
    from foreshadow.estimators import AutoEstimator

    estimator = AutoEstimator(
        problem_type=ProblemType.CLASSIFICATION,
        auto="tpot",
        estimator_kwargs={"max_time_mins": 1},
    )
    shadow = Foreshadow(estimator=estimator,
                        problem_type=ProblemType.CLASSIFICATION)
    with pytest.raises(ValueError):
        shadow.pickle_fitted_pipeline(tmpdir.join("fitted_pipeline.p"))
コード例 #3
0
def test_foreshadow_pickling_and_unpickling_tpot(tmpdir):
    from foreshadow.foreshadow import Foreshadow
    import pandas as pd
    import numpy as np
    from sklearn.datasets import load_breast_cancer
    from sklearn.model_selection import train_test_split

    np.random.seed(1337)

    cancer = load_breast_cancer()
    cancerX_df = pd.DataFrame(cancer.data, columns=cancer.feature_names)
    cancery_df = pd.DataFrame(cancer.target, columns=["target"])

    X_train, X_test, y_train, y_test = train_test_split(cancerX_df,
                                                        cancery_df,
                                                        test_size=0.2)

    from foreshadow.estimators import AutoEstimator

    estimator = AutoEstimator(
        problem_type=ProblemType.CLASSIFICATION,
        auto="tpot",
        estimator_kwargs={"max_time_mins": 1},
    )

    shadow = Foreshadow(estimator=estimator,
                        problem_type=ProblemType.CLASSIFICATION)
    pickled_file_location = tmpdir.join("fitted_pipeline.p")
    shadow.fit(X_train, y_train)
    shadow.pickle_fitted_pipeline(pickled_file_location)

    import pickle

    with open(pickled_file_location, "rb") as fopen:
        pipeline = pickle.load(fopen)

    score1 = shadow.score(X_test, y_test)
    score2 = pipeline.score(X_test, y_test)

    import unittest

    assertions = unittest.TestCase("__init__")
    # given the randomness of the tpot algorithm and the short run
    # time we configured, there is no guarantee the performance can
    # converge. The test here aims to evaluate if both cases have
    # produced a reasonable score and the difference is small.

    # Changing the decimal point to 1 due to failure on azure pipeline but
    # cannot be reproduced locally.
    assertions.assertAlmostEqual(score1, score2, places=2)