コード例 #1
0
def process_sequence(seq,
                     detections_path,
                     add_masks,
                     tracker_options,
                     optical_flow_path,
                     temp_out,
                     n_timesteps=None,
                     start_time_at_1=False):
    assert n_timesteps is not None
    #n_timesteps = TIMESTEPS_PER_SEQ[seq]
    det_boxes, det_scores, reid_features, det_classes, det_masks = \
      import_detections_for_sequence(seq, n_timesteps, detections_path, "", 0, add_masks)

    if tracker_options["mask_iou_weight_car"] > 0.0 or \
        tracker_options["mask_iou_weight_pedestrian"] > 0.0 or \
        tracker_options["bbox_iou_weight_car"] > 0.0 or \
        tracker_options["bbox_iou_weight_pedestrian"] > 0.0:
        optical_flow = load_optical_flow(seq, optical_flow_path)
    else:
        optical_flow = None

    hyp_tracks = track_single_sequence(tracker_options,
                                       det_boxes,
                                       det_scores,
                                       reid_features,
                                       det_classes,
                                       det_masks,
                                       optical_flow=optical_flow)
    hyp_tracks = make_disjoint(hyp_tracks, "score")
    export_tracking_result_in_kitti_format(seq,
                                           hyp_tracks,
                                           add_masks,
                                           "",
                                           temp_out,
                                           start_time_at_1=start_time_at_1)
コード例 #2
0
  def forward(self):
    out_folder = "forwarded/" + self.model_name + "/tracking_data_bbox_refined/"
    tf.gfile.MakeDirs(out_folder)
    for n in range(21):
      open(out_folder + "%04d" % n + ".txt", "w")
    data = self.val_data
    n_examples_per_epoch = data.n_examples_per_epoch()
    extraction_keys = [Extractions.DET_MASKS, DataKeys.IMAGE_FILENAMES, DataKeys.IDS]
    tracks = {}  # tag -> list of lists of trackelems
    for n in range(n_examples_per_epoch):
      res = self.trainer.validation_step(extraction_keys=extraction_keys)
      masks = res[Extractions.EXTRACTIONS][Extractions.DET_MASKS][0][0]
      #if len(masks) > 0:
      #  import matplotlib.pyplot as plt
      #  for mask in masks:
      #    plt.imshow(mask)
      #    plt.show()
      filename = res[Extractions.EXTRACTIONS][DataKeys.IMAGE_FILENAMES][0][0].decode("utf-8")
      sp = filename.split("/")
      seq = sp[-2]
      t = int(sp[-1].replace(".png", "").replace(".jpg", ""))
      ids = res[Extractions.EXTRACTIONS][DataKeys.IDS][0][0]
      masks_encoded = [cocomask.encode(np.asfortranarray(mask)) for mask in masks]
      if seq not in tracks:
        tracks[seq] = []
      while len(tracks[seq]) < t + 1:
        tracks[seq].append([])

      assert len(masks_encoded) == len(ids)
      for id_, mask_ in zip(ids, masks_encoded):
        x0, y0, w, h = cocomask.toBbox(mask_)
        box = [x0, y0, x0 + w, y0 + h]
        obj = data.tracking_result[seq][id_][t]
        class_str = obj.class_
        if class_str == "Car":
          class_id = 1
        elif class_str == "Pedestrian":
          class_id = 2
        else:
          assert False, ("unknown class str", class_str)
        score = obj.score
        tracks[seq][t].append(TrackElement(box=box, track_id=id_, class_=class_id, score=score, mask=mask_))
      print(n, "/", n_examples_per_epoch, masks.shape, filename, ids)

    for seq in tracks.keys():
      tracks[seq] = make_disjoint(tracks[seq], self.mask_disjoint_strategy)
      # write out data
      export_tracking_result_in_kitti_format(seq, tracks[seq], True, self.config.string("model"), out_folder)
コード例 #3
0
 def make_disjoint_helper(self, tracks):
     return make_disjoint(tracks, self.mask_disjoint_strategy)