コード例 #1
0
ファイル: test_env.py プロジェクト: Guillemdb/fragile
def discrete_atari_env():
    env = AtariEnvironment(name="MsPacman-v0",
                           clone_seeds=True,
                           autoreset=True)
    env.reset()
    env = DiscreteEnv(env)
    return env
コード例 #2
0
ファイル: test_env.py プロジェクト: vmarkovtsev/fragile
 def classic_control_env():
     env = ClassicControl()
     env.reset()
     env = DiscreteEnv(env)
     params = {"actions": {"dtype": np.int64}, "dt": {"dtype": np.float32}}
     states = States(state_dict=params, batch_size=N_WALKERS)
     states.update(actions=np.ones(N_WALKERS), dt=np.ones(N_WALKERS))
     return env, states
コード例 #3
0
ファイル: test_swarm.py プロジェクト: softmaxhuanchen/fragile
def create_cartpole_swarm():
    swarm = Swarm(
        model=lambda x: DiscreteUniform(env=x),
        walkers=Walkers,
        env=lambda: DiscreteEnv(ClassicControl("CartPole-v0")),
        reward_limit=121,
        n_walkers=150,
        max_epochs=300,
        reward_scale=2,
    )
    return swarm
コード例 #4
0
ファイル: test_swarm.py プロジェクト: vmarkovtsev/fragile
def create_cartpole_swarm():
    swarm = Swarm(
        model=lambda x: DiscreteUniform(env=x),
        walkers=Walkers,
        env=lambda: DiscreteEnv(ClassicControl()),
        n_walkers=20,
        max_iters=200,
        prune_tree=True,
        reward_scale=2,
    )
    return swarm
コード例 #5
0
def create_atari_swarm():
    env = AtariEnvironment(name="MsPacman-ram-v0", )
    dt = GaussianDt(min_dt=10, max_dt=100, loc_dt=5, scale_dt=2)
    swarm = Swarm(
        model=lambda x: DiscreteUniform(env=x, critic=dt),
        env=lambda: DiscreteEnv(env),
        n_walkers=6,
        max_epochs=10,
        reward_scale=2,
        reward_limit=1,
    )
    return swarm
コード例 #6
0
ファイル: test_swarm.py プロジェクト: softmaxhuanchen/fragile
def create_atari_swarm():
    env = AtariEnvironment(name="MsPacman-ram-v0",
                           clone_seeds=True,
                           autoreset=True)
    dt = GaussianDt(min_dt=3, max_dt=100, loc_dt=5, scale_dt=2)
    swarm = Swarm(
        model=lambda x: DiscreteUniform(env=x, critic=dt),
        walkers=Walkers,
        env=lambda: DiscreteEnv(env),
        n_walkers=67,
        max_epochs=500,
        reward_scale=2,
        reward_limit=751,
    )
    return swarm
コード例 #7
0
ファイル: test_env.py プロジェクト: vmarkovtsev/fragile
 def atari_env():
     env = AtariEnvironment(name="MsPacman-v0",
                            clone_seeds=True,
                            autoreset=True)
     env.reset()
     env = DiscreteEnv(env)
     params = {
         "actions": {
             "dtype": np.int64
         },
         "critic": {
             "dtype": np.float32
         }
     }
     states = States(state_dict=params, batch_size=N_WALKERS)
     states.update(actions=np.ones(N_WALKERS), critic=np.ones(N_WALKERS))
     return env, states
コード例 #8
0
ファイル: test_swarm.py プロジェクト: vmarkovtsev/fragile
def create_atari_swarm():
    env = ParallelEnvironment(
        env_class=AtariEnvironment,
        name="MsPacman-ram-v0",
        clone_seeds=True,
        autoreset=True,
        blocking=False,
    )
    dt = GaussianDt(min_dt=3, max_dt=100, loc_dt=5, scale_dt=2)
    swarm = Swarm(
        model=lambda x: DiscreteUniform(env=x, critic=dt),
        walkers=Walkers,
        env=lambda: DiscreteEnv(env),
        n_walkers=67,
        max_iters=20,
        prune_tree=True,
        reward_scale=2,
    )
    return swarm
コード例 #9
0
ファイル: test_utils.py プロジェクト: softmaxhuanchen/fragile
            def env(self):
                from fragile.core.env import DiscreteEnv

                return DiscreteEnv(DummyEnv())
コード例 #10
0
ファイル: test_env.py プロジェクト: Zeta36/fragile
def classic_control_env():
    env = ClassicControl()
    env.reset()
    env = DiscreteEnv(env)
    return env