def test_experiment_weightedMean_MNIST_predefModel_alexnet(self): with sf.test_mode(): modelName = "alexnet" metadata = sf.Metadata(testFlag=True, trainFlag=True, debugInfo=True) dataMetadata = dc.DefaultData_Metadata( pin_memoryTest=True, pin_memoryTrain=True, epoch=1, test_howOftenPrintTrain=2, howOftenPrintTrain=3, resizeTo=Test_RunExperiment.MNIST_RESIZE) optimizerDataDict = {"learning_rate": 1e-3, "momentum": 0.9} obj = models.alexnet() smoothingMetadata = dc.Test_DefaultSmoothingOscilationWeightedMean_Metadata( test_weightIter=dc.DefaultWeightDecay(1.05), test_device='cpu', test_epsilon=1e-5, test_hardEpsilon=1e-7, test_weightsEpsilon=1e-6, test_weightSumContainerSize=3, test_weightSumContainerSizeStartAt=1, test_lossContainer=20, test_lossContainerDelayedStartAt=10) modelMetadata = dc.DefaultModel_Metadata( lossFuncDataDict={}, optimizerDataDict=optimizerDataDict, device='cuda:0') data = dc.DefaultDataMNIST(dataMetadata) smoothing = dc.DefaultSmoothingOscilationWeightedMean( smoothingMetadata) model = dc.DefaultModelPredef(obj=obj, modelMetadata=modelMetadata, name=modelName) optimizer = optim.SGD(model.getNNModelModule().parameters(), lr=optimizerDataDict['learning_rate'], momentum=optimizerDataDict['momentum']) loss_fn = nn.CrossEntropyLoss() stat = dc.run(metadataObj=metadata, data=data, model=model, smoothing=smoothing, optimizer=optimizer, lossFunc=loss_fn, modelMetadata=modelMetadata, dataMetadata=dataMetadata, smoothingMetadata=smoothingMetadata)
def test_experiment_borderline_MNIST_predefModel_wide_resnet(self): with sf.test_mode(): modelName = "wide_resnet" metadata = sf.Metadata(testFlag=True, trainFlag=True, debugInfo=True) dataMetadata = dc.DefaultData_Metadata( pin_memoryTest=True, pin_memoryTrain=True, epoch=1, test_howOftenPrintTrain=2, howOftenPrintTrain=3, resizeTo=Test_RunExperiment.MNIST_RESIZE) optimizerDataDict = {"learning_rate": 1e-3, "momentum": 0.9} obj = models.wide_resnet50_2() smoothingMetadata = dc.Test_DefaultSmoothingBorderline_Metadata( test_numbOfBatchAfterSwitchOn=5, test_device='cuda:0') modelMetadata = dc.DefaultModel_Metadata( lossFuncDataDict={}, optimizerDataDict=optimizerDataDict, device='cuda:0') data = dc.DefaultDataMNIST(dataMetadata) smoothing = dc.DefaultSmoothingBorderline(smoothingMetadata) model = dc.DefaultModelPredef(obj=obj, modelMetadata=modelMetadata, name=modelName) optimizer = optim.SGD(model.getNNModelModule().parameters(), lr=optimizerDataDict['learning_rate'], momentum=optimizerDataDict['momentum']) loss_fn = nn.CrossEntropyLoss() stat = dc.run(metadataObj=metadata, data=data, model=model, smoothing=smoothing, optimizer=optimizer, lossFunc=loss_fn, modelMetadata=modelMetadata, dataMetadata=dataMetadata, smoothingMetadata=smoothingMetadata)
layers = [2, 2, 2, 2] block = modResnet.BasicBlock types = ('predefModel', 'CIFAR10', 'disabled') try: stats = [] rootFolder = prefix + sf.Output.getTimeStr() + ''.join(x + "_" for x in types) smoothingMetadata = dc.DisabledSmoothing_Metadata() for r in range(loop): obj = models.ResNet(block, layers, num_classes=num_classes) data = dc.DefaultDataCIFAR10(dataMetadata) model = dc.DefaultModelPredef(obj=obj, modelMetadata=modelMetadata, name=modelName) smoothing = dc.DisabledSmoothing(smoothingMetadata) optimizer = optim.SGD(model.getNNModelModule().parameters(), lr=optimizerDataDict['learning_rate'], weight_decay=optimizerDataDict['weight_decay'], momentum=optimizerDataDict['momentum']) scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=30, gamma=0.1) loss_fn = nn.CrossEntropyLoss() stat=dc.run(metadataObj=metadata, data=data, model=model, smoothing=smoothing, optimizer=optimizer, lossFunc=loss_fn, modelMetadata=modelMetadata, dataMetadata=dataMetadata, smoothingMetadata=smoothingMetadata, rootFolder=rootFolder, schedulers=[([30, 60, 90, 120, 150, 180], scheduler)]) stat.saveSelf(name="stat") stats.append(stat) experiments.printAvgStats(stats, metadata, runningAvgSize=runningAvgSize)