コード例 #1
0
ファイル: test_preset.py プロジェクト: timothycrosley/fri
def test__compute_single_preset_relevance_bounds(randomstate):
    problem = ProblemName.CLASSIFICATION
    data = quick_generate(
        problem,
        n_samples=300,
        n_features=4,
        n_redundant=2,
        n_strel=2,
        random_state=randomstate,
    )

    X_orig, y = data
    X = scale(X_orig)

    model = FRI(problem, random_state=randomstate, n_jobs=1)
    model.fit(X, y)
    normal_range = model.interval_.copy()

    i = 0
    preset = [model.interval_[i, 0]]
    range = model._relevance_bounds_computer.compute_single_preset_relevance_bounds(
        i, preset)
    assert normal_range.shape == range.shape
    assert range[i][0] == preset[0]
    assert range[i][1] == preset

    preset = model.interval_[i, 0]
    range = model._relevance_bounds_computer.compute_single_preset_relevance_bounds(
        i, preset)
    assert normal_range.shape == range.shape
    assert range[i][0] == preset
    assert range[i][1] == preset
コード例 #2
0
ファイル: test_FRI.py プロジェクト: timothycrosley/fri
def test_lupi_model(problem, random_state):
    model = FRI(problem, random_state=random_state)

    X, X_p, y = quick_generate(problem, random_state=random_state)
    combined = np.hstack([X, X_p])
    model.fit(combined, y, lupi_features=X.shape[1])

    assert len(model.allrel_prediction_) == combined.shape[1]
コード例 #3
0
ファイル: test_FRI.py プロジェクト: timothycrosley/fri
def test_normal_model(problem, random_state):
    model = FRI(problem, random_state=random_state)

    X, y = quick_generate(problem, random_state=random_state)

    model.fit(X, y)

    assert len(model.allrel_prediction_) == X.shape[1]
コード例 #4
0
def test_normal_model(random_state):
    problem = fri.ProblemName.CLASSIFICATION
    model = FRI(problem, random_state=random_state)

    X, y = quick_generate(problem, random_state=random_state, n_features=5)

    model.fit(X, y)

    assert len(model.allrel_prediction_) == X.shape[1]

    groups, links = model.get_grouping()
    print(groups)
    assert len(groups) == X.shape[1]
コード例 #5
0
ファイル: test_preset.py プロジェクト: timothycrosley/fri
def test__compute_multi_preset_relevance_bounds(problem, randomstate):
    data = quick_generate(
        problem,
        n_samples=300,
        n_features=4,
        n_redundant=2,
        n_strel=2,
        random_state=randomstate,
    )

    X_orig, y = data
    X = scale(X_orig)

    model = FRI(problem, random_state=randomstate, n_jobs=1)
    model.fit(X, y)
    normal_range = model.interval_.copy()

    # We fix two feature values at the same time.
    # Note that we can not use the relevance bounds for multiple features, because of infeasibility
    # In the singular optimization case we exhaust the complete slack of our model constraints
    # If whe use multiple relevance bounds we double count this slack and the model optimization rightfully claims infeasible
    # Instead we use the mean value of the relevance bounds, which should be working in most cases
    i = 0
    mean_0 = np.mean([model.interval_[i, 0], model.interval_[i, 1]])
    preset_0 = [mean_0, mean_0]
    i = 1
    mean_1 = np.mean([model.interval_[i, 0], model.interval_[i, 1]])
    preset_1 = [mean_1, mean_1]
    presetModel = {0: preset_0, 1: preset_1}
    range = model._relevance_bounds_computer.compute_multi_preset_relevance_bounds(
        presetModel)

    assert normal_range.shape == range.shape
    i = 0
    assert range[i][0] == preset_0[0]
    assert range[i][1] == preset_0[1]
    i = 1
    assert range[i][0] == preset_1[0]
    assert range[i][1] == preset_1[1]
コード例 #6
0
ファイル: test_toydata.py プロジェクト: timothycrosley/fri
def test_quick_generate(problem):
    data = quick_generate(problem)
    assert (
        len(data) == 2 or len(data) == 3
    )  # Check if two-tuple or three-tuple depending on if we have lupi data or not
コード例 #7
0
def data(prob):
    return quick_generate(prob)