def capture_frames(ffmpeg_process, camera_name, frame_shape, frame_manager: FrameManager, frame_queue, take_frame: int, fps: EventsPerSecond, skipped_fps: EventsPerSecond, stop_event: mp.Event, current_frame: mp.Value): frame_num = 0 frame_size = frame_shape[0] * frame_shape[1] * 3 // 2 skipped_fps.start() while True: if stop_event.is_set(): print(f"{camera_name}: stop event set. exiting capture thread...") break frame_bytes = ffmpeg_process.stdout.read(frame_size) current_frame.value = datetime.datetime.now().timestamp() if len(frame_bytes) < frame_size: print( f"{camera_name}: ffmpeg sent a broken frame. something is wrong." ) if ffmpeg_process.poll() != None: print( f"{camera_name}: ffmpeg process is not running. exiting capture thread..." ) break else: continue fps.update() frame_num += 1 if (frame_num % take_frame) != 0: skipped_fps.update() continue # if the queue is full, skip this frame if frame_queue.full(): skipped_fps.update() continue # put the frame in the frame manager frame_buffer = frame_manager.create( f"{camera_name}{current_frame.value}", frame_size) frame_buffer[:] = frame_bytes[:] frame_manager.close(f"{camera_name}{current_frame.value}") # add to the queue frame_queue.put(current_frame.value)
def capture_frames(ffmpeg_process, camera_name, frame_shape, frame_manager: FrameManager, frame_queue, take_frame: int, fps:mp.Value, skipped_fps: mp.Value, stop_event: mp.Event, current_frame: mp.Value): frame_num = 0 frame_size = frame_shape[0] * frame_shape[1] * 3 // 2 frame_rate = EventsPerSecond() frame_rate.start() skipped_eps = EventsPerSecond() skipped_eps.start() while True: fps.value = frame_rate.eps() skipped_fps = skipped_eps.eps() if stop_event.is_set(): print(f"{camera_name}: stop event set. exiting capture thread...") break current_frame.value = datetime.datetime.now().timestamp() frame_name = f"{camera_name}{current_frame.value}" frame_buffer = frame_manager.create(frame_name, frame_size) try: frame_buffer[:] = ffmpeg_process.stdout.read(frame_size) except: print(f"{camera_name}: ffmpeg sent a broken frame. something is wrong.") if ffmpeg_process.poll() != None: print(f"{camera_name}: ffmpeg process is not running. exiting capture thread...") frame_manager.delete(frame_name) break continue frame_rate.update() frame_num += 1 if (frame_num % take_frame) != 0: skipped_eps.update() frame_manager.delete(frame_name) continue # if the queue is full, skip this frame if frame_queue.full(): skipped_eps.update() frame_manager.delete(frame_name) continue # close the frame frame_manager.close(frame_name) # add to the queue frame_queue.put(current_frame.value)
def capture_frames( ffmpeg_process, camera_name, frame_shape, frame_manager: FrameManager, frame_queue, fps: mp.Value, skipped_fps: mp.Value, current_frame: mp.Value, ): frame_size = frame_shape[0] * frame_shape[1] frame_rate = EventsPerSecond() frame_rate.start() skipped_eps = EventsPerSecond() skipped_eps.start() while True: fps.value = frame_rate.eps() skipped_fps = skipped_eps.eps() current_frame.value = datetime.datetime.now().timestamp() frame_name = f"{camera_name}{current_frame.value}" frame_buffer = frame_manager.create(frame_name, frame_size) try: frame_buffer[:] = ffmpeg_process.stdout.read(frame_size) except Exception as e: logger.error(f"{camera_name}: Unable to read frames from ffmpeg process.") if ffmpeg_process.poll() != None: logger.error( f"{camera_name}: ffmpeg process is not running. exiting capture thread..." ) frame_manager.delete(frame_name) break continue frame_rate.update() # if the queue is full, skip this frame if frame_queue.full(): skipped_eps.update() frame_manager.delete(frame_name) continue # close the frame frame_manager.close(frame_name) # add to the queue frame_queue.put(current_frame.value)
def process_frames(camera_name: str, frame_queue: mp.Queue, frame_shape, frame_manager: FrameManager, motion_detector: MotionDetector, object_detector: RemoteObjectDetector, object_tracker: ObjectTracker, detected_objects_queue: mp.Queue, fps: mp.Value, detection_fps: mp.Value, current_frame_time: mp.Value, objects_to_track: List[str], object_filters: Dict, mask, stop_event: mp.Event, exit_on_empty: bool = False): fps_tracker = EventsPerSecond() fps_tracker.start() while True: if stop_event.is_set() or (exit_on_empty and frame_queue.empty()): print(f"Exiting track_objects...") break try: frame_time = frame_queue.get(True, 10) except queue.Empty: continue current_frame_time.value = frame_time frame = frame_manager.get(f"{camera_name}{frame_time}", (frame_shape[0] * 3 // 2, frame_shape[1])) if frame is None: print(f"{camera_name}: frame {frame_time} is not in memory store.") continue fps_tracker.update() fps.value = fps_tracker.eps() # look for motion motion_boxes = motion_detector.detect(frame) tracked_object_boxes = [ obj['box'] for obj in object_tracker.tracked_objects.values() ] # combine motion boxes with known locations of existing objects combined_boxes = reduce_boxes(motion_boxes + tracked_object_boxes) # compute regions regions = [ calculate_region(frame_shape, a[0], a[1], a[2], a[3], 1.2) for a in combined_boxes ] # combine overlapping regions combined_regions = reduce_boxes(regions) # re-compute regions regions = [ calculate_region(frame_shape, a[0], a[1], a[2], a[3], 1.0) for a in combined_regions ] # resize regions and detect detections = [] for region in regions: detections.extend( detect(object_detector, frame, region, objects_to_track, object_filters, mask)) ######### # merge objects, check for clipped objects and look again up to 4 times ######### refining = True refine_count = 0 while refining and refine_count < 4: refining = False # group by name detected_object_groups = defaultdict(lambda: []) for detection in detections: detected_object_groups[detection[0]].append(detection) selected_objects = [] for group in detected_object_groups.values(): # apply non-maxima suppression to suppress weak, overlapping bounding boxes boxes = [(o[2][0], o[2][1], o[2][2] - o[2][0], o[2][3] - o[2][1]) for o in group] confidences = [o[1] for o in group] idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4) for index in idxs: obj = group[index[0]] if clipped(obj, frame_shape): box = obj[2] # calculate a new region that will hopefully get the entire object region = calculate_region(frame_shape, box[0], box[1], box[2], box[3]) selected_objects.extend( detect(object_detector, frame, region, objects_to_track, object_filters, mask)) refining = True else: selected_objects.append(obj) # set the detections list to only include top, complete objects # and new detections detections = selected_objects if refining: refine_count += 1 # now that we have refined our detections, we need to track objects object_tracker.match_and_update(frame_time, detections) # add to the queue detected_objects_queue.put( (camera_name, frame_time, object_tracker.tracked_objects)) detection_fps.value = object_detector.fps.eps() frame_manager.close(f"{camera_name}{frame_time}")
def process_frames( camera_name: str, frame_queue: mp.Queue, frame_shape, model_shape, detect_config: DetectConfig, frame_manager: FrameManager, motion_detector: MotionDetector, object_detector: RemoteObjectDetector, object_tracker: ObjectTracker, detected_objects_queue: mp.Queue, process_info: Dict, objects_to_track: List[str], object_filters, detection_enabled: mp.Value, stop_event, exit_on_empty: bool = False, ): fps = process_info["process_fps"] detection_fps = process_info["detection_fps"] current_frame_time = process_info["detection_frame"] fps_tracker = EventsPerSecond() fps_tracker.start() startup_scan_counter = 0 while not stop_event.is_set(): if exit_on_empty and frame_queue.empty(): logger.info(f"Exiting track_objects...") break try: frame_time = frame_queue.get(True, 10) except queue.Empty: continue current_frame_time.value = frame_time frame = frame_manager.get( f"{camera_name}{frame_time}", (frame_shape[0] * 3 // 2, frame_shape[1]) ) if frame is None: logger.info(f"{camera_name}: frame {frame_time} is not in memory store.") continue # look for motion motion_boxes = motion_detector.detect(frame) regions = [] # if detection is disabled if not detection_enabled.value: object_tracker.match_and_update(frame_time, []) else: # get stationary object ids # check every Nth frame for stationary objects # disappeared objects are not stationary # also check for overlapping motion boxes stationary_object_ids = [ obj["id"] for obj in object_tracker.tracked_objects.values() # if there hasn't been motion for 10 frames if obj["motionless_count"] >= 10 # and it isn't due for a periodic check and ( detect_config.stationary.interval == 0 or obj["motionless_count"] % detect_config.stationary.interval != 0 ) # and it hasn't disappeared and object_tracker.disappeared[obj["id"]] == 0 # and it doesn't overlap with any current motion boxes and not intersects_any(obj["box"], motion_boxes) ] # get tracked object boxes that aren't stationary tracked_object_boxes = [ obj["box"] for obj in object_tracker.tracked_objects.values() if not obj["id"] in stationary_object_ids ] # combine motion boxes with known locations of existing objects combined_boxes = reduce_boxes(motion_boxes + tracked_object_boxes) region_min_size = max(model_shape[0], model_shape[1]) # compute regions regions = [ calculate_region( frame_shape, a[0], a[1], a[2], a[3], region_min_size, multiplier=random.uniform(1.2, 1.5), ) for a in combined_boxes ] # consolidate regions with heavy overlap regions = [ calculate_region( frame_shape, a[0], a[1], a[2], a[3], region_min_size, multiplier=1.0 ) for a in reduce_boxes(regions, 0.4) ] # if starting up, get the next startup scan region if startup_scan_counter < 9: ymin = int(frame_shape[0] / 3 * startup_scan_counter / 3) ymax = int(frame_shape[0] / 3 + ymin) xmin = int(frame_shape[1] / 3 * startup_scan_counter / 3) xmax = int(frame_shape[1] / 3 + xmin) regions.append( calculate_region( frame_shape, xmin, ymin, xmax, ymax, region_min_size, multiplier=1.2, ) ) startup_scan_counter += 1 # resize regions and detect # seed with stationary objects detections = [ ( obj["label"], obj["score"], obj["box"], obj["area"], obj["region"], ) for obj in object_tracker.tracked_objects.values() if obj["id"] in stationary_object_ids ] for region in regions: detections.extend( detect( object_detector, frame, model_shape, region, objects_to_track, object_filters, ) ) ######### # merge objects, check for clipped objects and look again up to 4 times ######### refining = len(regions) > 0 refine_count = 0 while refining and refine_count < 4: refining = False # group by name detected_object_groups = defaultdict(lambda: []) for detection in detections: detected_object_groups[detection[0]].append(detection) selected_objects = [] for group in detected_object_groups.values(): # apply non-maxima suppression to suppress weak, overlapping bounding boxes boxes = [ (o[2][0], o[2][1], o[2][2] - o[2][0], o[2][3] - o[2][1]) for o in group ] confidences = [o[1] for o in group] idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4) for index in idxs: obj = group[index[0]] if clipped(obj, frame_shape): box = obj[2] # calculate a new region that will hopefully get the entire object region = calculate_region( frame_shape, box[0], box[1], box[2], box[3], region_min_size, ) regions.append(region) selected_objects.extend( detect( object_detector, frame, model_shape, region, objects_to_track, object_filters, ) ) refining = True else: selected_objects.append(obj) # set the detections list to only include top, complete objects # and new detections detections = selected_objects if refining: refine_count += 1 ## drop detections that overlap too much consolidated_detections = [] # if detection was run on this frame, consolidate if len(regions) > 0: # group by name detected_object_groups = defaultdict(lambda: []) for detection in detections: detected_object_groups[detection[0]].append(detection) # loop over detections grouped by label for group in detected_object_groups.values(): # if the group only has 1 item, skip if len(group) == 1: consolidated_detections.append(group[0]) continue # sort smallest to largest by area sorted_by_area = sorted(group, key=lambda g: g[3]) for current_detection_idx in range(0, len(sorted_by_area)): current_detection = sorted_by_area[current_detection_idx][2] overlap = 0 for to_check_idx in range( min(current_detection_idx + 1, len(sorted_by_area)), len(sorted_by_area), ): to_check = sorted_by_area[to_check_idx][2] # if 90% of smaller detection is inside of another detection, consolidate if ( area(intersection(current_detection, to_check)) / area(current_detection) > 0.9 ): overlap = 1 break if overlap == 0: consolidated_detections.append( sorted_by_area[current_detection_idx] ) # now that we have refined our detections, we need to track objects object_tracker.match_and_update(frame_time, consolidated_detections) # else, just update the frame times for the stationary objects else: object_tracker.update_frame_times(frame_time) # add to the queue if not full if detected_objects_queue.full(): frame_manager.delete(f"{camera_name}{frame_time}") continue else: fps_tracker.update() fps.value = fps_tracker.eps() detected_objects_queue.put( ( camera_name, frame_time, object_tracker.tracked_objects, motion_boxes, regions, ) ) detection_fps.value = object_detector.fps.eps() frame_manager.close(f"{camera_name}{frame_time}")