コード例 #1
0
ファイル: test_wf_conn.py プロジェクト: danieltomasz/frites
 def test_stats(self):
     # FFX
     ds = DatasetEphy(x, roi=roi, times=times)
     WfConnComod(inference='ffx').fit(ds, **kw_conn)
     # RFX
     ds = DatasetEphy(x, roi=roi, times=times)
     WfConnComod(inference='rfx').fit(ds, **kw_conn)
コード例 #2
0
ファイル: test_ds_ephy.py プロジェクト: danieltomasz/frites
 def test_get_connectivity_pairs(self):
     """Test function get_connectivity_pairs."""
     d_3d = self._get_data(3)
     ds = DatasetEphy(d_3d, times='times', **kw)
     for direction in [True, False]:
         for blocks in [True, False]:
             df_1, df_2 = ds.get_connectivity_pairs(directed=direction,
                                                    as_blocks=blocks,
                                                    verbose=False)
             assert isinstance(df_1, pd.DataFrame)
             assert isinstance(df_2, pd.DataFrame)
コード例 #3
0
ファイル: test_ds_ephy.py プロジェクト: danieltomasz/frites
 def test_multiconditions(self):
     """Test multi-conditions remapping."""
     d_3d = self._get_data(3)
     ds = DatasetEphy(d_3d, y=[np.c_[k, i] for k, i in zip(y_int, z)], **kw)
     y_s1, y_s2 = ds.x[0]['y'].data, ds.x[1]['y'].data
     np.testing.assert_array_equal(y_s1, [0] * 4 + [1] + [2] * 5)
     np.testing.assert_array_equal(y_s2, [3] * 2 + [2] * 3 + [1] + [4] * 4)
コード例 #4
0
ファイル: test_ds_ephy.py プロジェクト: danieltomasz/frites
 def test_get_roi_data(self):
     """Test getting the data of a single brain region."""
     # build dataset
     d_3d = self._get_data(3)
     ds = DatasetEphy(d_3d, y='y', z='z', **kw)
     # get the data
     ds_roi2 = ds.get_roi_data("roi_2", copnorm=False)
     np.testing.assert_array_equal(ds_roi2.shape, (100, 1, 20))
     # test the data
     s1_r2, s2_r2 = d_3d[0].sel(roi='roi_2'), d_3d[1].sel(roi='roi_2')
     s12 = xr.concat((s1_r2, s2_r2), 'trials').T.expand_dims('mv', axis=-2)
     np.testing.assert_array_equal(ds_roi2.data, s12.data)
     # test task-related variables
     y_12, z_12 = np.r_[y_int[0], y_int[1]], np.r_[z[0], z[1]]
     np.testing.assert_array_equal(y_12, ds_roi2['y'].data)
     np.testing.assert_array_equal(z_12, ds_roi2['z'].data)
コード例 #5
0
ファイル: test_wf_mi.py プロジェクト: meronvermaas/frites
 def test_no_stat(self):
     """Test on no stats / no permutations / don't repeat computations."""
     y, gt = sim_mi_cc(x, snr=1.)
     dt = DatasetEphy(x, y, roi, times=time)
     # compute permutations but not statistics
     kernel = np.hanning(3)
     wf = WfMi('cc', 'ffx', kernel=kernel, verbose=False)
     assert isinstance(wf.wf_stats, WfStats)
     wf.fit(dt, mcp='nostat', **kw_mi)
     assert len(wf.mi) == len(wf.mi_p) == n_roi
     assert len(wf.mi_p[0].shape) != 0
     # don't compute permutations nor stats
     wf = WfMi('cc', 'ffx', verbose=False)
     mi, pv = wf.fit(dt, mcp=None, **kw_mi)
     assert wf.mi_p[0].shape == (0, )
     assert pv.min() == pv.max() == 1.
     # don't compute permutations twice
     wf = WfMi('cc', 'ffx', verbose=False)
     t_start_1 = tst()
     wf.fit(dt, mcp='fdr', **kw_mi)
     t_end_1 = tst()
     t_start_2 = tst()
     wf.fit(dt, mcp='maxstat', **kw_mi)
     t_end_2 = tst()
     assert t_end_1 - t_start_1 > t_end_2 - t_start_2
コード例 #6
0
ファイル: test_wf_mi.py プロジェクト: meronvermaas/frites
 def test_definition(self):
     """Test workflow definition."""
     y, gt = sim_mi_cc(x, snr=1.)
     dt = DatasetEphy(x, y, roi, times=time)
     wf = WfMi(mi_type='cc', inference='rfx')
     wf.fit(dt, **kw_mi)
     wf.tvalues
コード例 #7
0
ファイル: test_wf_conn.py プロジェクト: danieltomasz/frites
 def test_properties(self):
     ds = DatasetEphy(x, roi=roi, times=times)
     wf = WfConnComod()
     wf.fit(ds, **kw_conn)
     assert isinstance(wf.mi, list)
     assert isinstance(wf.mi_p, list)
     assert all([k.shape == (n_subjects, n_times) for k in wf.mi])
     assert all([k.shape == (n_perm, n_subjects, n_times) for k in wf.mi_p])
コード例 #8
0
ファイル: test_wf_mi.py プロジェクト: meronvermaas/frites
 def test_conjunction_analysis(self):
     """Test the conjunction analysis."""
     y, gt = sim_mi_cc(x, snr=1.)
     dt = DatasetEphy(x, y, roi, times=time)
     wf = WfMi(mi_type='cc', inference='rfx')
     mi, pv = wf.fit(dt, **kw_mi)
     cj_ss, cj = wf.conjunction_analysis(dt)
     assert cj_ss.shape == (n_subjects, n_times, n_roi)
     assert cj.shape == (n_times, n_roi)
コード例 #9
0
ファイル: test_ds_ephy.py プロジェクト: danieltomasz/frites
 def test_properties(self):
     """Test function properties."""
     d_3d = self._get_data(3)
     ds = DatasetEphy(d_3d, y='y', z='z', roi='roi', times='times', **kw)
     assert isinstance(ds.x, list)
     assert isinstance(ds.df_rs, pd.DataFrame)
     np.testing.assert_array_equal(ds.times, times)
     np.testing.assert_array_equal(ds.roi_names,
                                   ['roi_0', 'roi_1', 'roi_2', 'roi_3'])
コード例 #10
0
ファイル: test_wf_mi.py プロジェクト: meronvermaas/frites
 def test_mi_ccd(self):
     """Test method fit."""
     # built the regressor and discret variables
     y, z, gt = sim_mi_ccd(x, snr=1.)
     # run workflow
     for mi_meth in ['gc', 'bin']:
         dt = DatasetEphy(x, y, roi, z=z, times=time)
         WfMi(mi_type='ccd',
              inference='ffx',
              mi_method=mi_meth,
              verbose=False).fit(dt, **kw_mi)
         WfMi(mi_type='ccd',
              inference='rfx',
              mi_method=mi_meth,
              verbose=False).fit(dt, **kw_mi)
コード例 #11
0
ファイル: test_wf_mi.py プロジェクト: danieltomasz/frites
 def test_mi_ccd(self):
     """Test method fit."""
     # built the regressor and discret variables
     y, z, gt = sim_mi_ccd(x.copy(), snr=1.)
     # run workflow
     dt = DatasetEphy(x.copy(), y=y, roi=roi, z=z, times=time)
     for est in est_list:
         estimator = est(mi_type='ccd')
         WfMi(mi_type='ccd',
              inference='ffx',
              estimator=estimator,
              verbose=False).fit(dt, **kw_mi)
         WfMi(mi_type='ccd',
              inference='rfx',
              estimator=estimator,
              verbose=False).fit(dt, **kw_mi)
コード例 #12
0
ファイル: test_ds_ephy.py プロジェクト: danieltomasz/frites
 def test_agg_ch(self):
     """Test channels aggregation."""
     # build dataset (with aggregation)
     d_3d = self._get_data(3)
     ds = DatasetEphy(d_3d, roi='roi', agg_ch=True, **kw)
     ds_roi2 = ds.get_roi_data("roi_0", copnorm=False)
     np.testing.assert_array_equal(ds_roi2['agg_ch'].data, [0] * 30)
     # build dataset (without aggregation)
     ds = DatasetEphy(d_3d, roi='roi', agg_ch=False, **kw)
     ds_roi0 = ds.get_roi_data("roi_0", copnorm=False)
     np.testing.assert_array_equal(ds_roi0['agg_ch'].data,
                                   [0] * 10 + [1] * 10 + [6] * 10)
コード例 #13
0
ファイル: test_ds_ephy.py プロジェクト: danieltomasz/frites
 def test_slicing(self):
     """Test spatio-temporal slicing."""
     d_3d = self._get_data(3)
     xt1, xt2 = 0.1, 0.5
     xs1, xs2 = np.abs(times - xt1).argmin(), np.abs(times - xt2).argmin()
     # ds.sel
     ds = DatasetEphy(d_3d, times='times', **kw)
     ds = ds.sel(times=slice(xt1, xt2))
     np.testing.assert_array_equal(ds.times, times[slice(xs1, xs2 + 1)])
     # ds.isel
     ds = DatasetEphy(d_3d, times='times', **kw)
     ds = ds.isel(times=slice(xs1, xs2))
     np.testing.assert_array_equal(ds.times, times[slice(xs1, xs2)])
コード例 #14
0
ファイル: test_ds_ephy.py プロジェクト: danieltomasz/frites
 def test_multivariate(self):
     """Test multivariate"""
     d_4d = self._get_data(4)
     # multivariate = False
     ds = DatasetEphy(d_4d, roi='roi', multivariate=False, **kw)
     x_roi2 = ds.get_roi_data('roi_2')
     assert x_roi2.dims == ('freqs', 'times', 'mv', 'rtr')
     assert x_roi2.shape == (4, 100, 1, 20)
     # multivariate = True
     d_4d = self._get_data(4)
     ds = DatasetEphy(d_4d, roi='roi', multivariate=True, **kw)
     x_roi2 = ds.get_roi_data('roi_2')
     assert x_roi2.dims == ('times', 'mv', 'rtr')
     assert x_roi2.shape == (100, 4, 20)
コード例 #15
0
ファイル: test_ds_ephy.py プロジェクト: danieltomasz/frites
 def test_definition(self):
     """Test function definition."""
     d_3d = self._get_data(3)
     DatasetEphy(d_3d.copy(), **kw)
     DatasetEphy(d_3d.copy(), y='y', **kw)
     DatasetEphy(d_3d.copy(), y='y', z='z', **kw)
     DatasetEphy(d_3d.copy(), y='y', z='z', roi='roi', **kw)
     DatasetEphy(d_3d.copy(), y='y', z='z', roi='roi', times='times', **kw)
     DatasetEphy(d_3d.copy(),
                 y='y',
                 z='z',
                 roi='roi',
                 times='times',
                 agg_ch=False,
                 **kw)
     DatasetEphy(d_3d,
                 y='y',
                 z='z',
                 roi='roi',
                 times='times',
                 agg_ch=False,
                 multivariate=True,
                 **kw)
コード例 #16
0
ファイル: test_ds_ephy.py プロジェクト: danieltomasz/frites
 def test_copnorm(self):
     """Test function copnorm."""
     # build dataset
     d_3d = self._get_data(3)
     ds = DatasetEphy(d_3d, y='y', z='z', **kw)
     # check copnorm range
     ds_roi2 = ds.get_roi_data("roi_2", copnorm=False)
     s1_r2, s2_r2 = d_3d[0].sel(roi='roi_2'), d_3d[1].sel(roi='roi_2')
     s12 = xr.concat((s1_r2, s2_r2), 'trials').T.expand_dims('mv', axis=-2)
     assert 9. < ds_roi2.data.ravel().mean() < 11.
     np.testing.assert_array_equal(s12.data, ds_roi2.data)
     ds_roi2 = ds.get_roi_data("roi_2", copnorm=True)
     assert -1. < ds_roi2.data.ravel().mean() < 1.
     # check values (gcrn_per_suj=False)
     gc_t = ds.get_roi_data("roi_2", copnorm=True, gcrn_per_suj=False)
     np.testing.assert_array_equal(copnorm_nd(s12.data), gc_t.data)
     # check values (gcrn_per_suj=True)
     gc_t = ds.get_roi_data("roi_2", copnorm=True, gcrn_per_suj=True)
     np.testing.assert_array_equal(
         copnorm_cat_nd(s12.data, gc_t['subject'].data), gc_t.data)
コード例 #17
0
    # Load network feature
    feature = xr.load_dataarray(path_metric)
    # Average if needed
    out = average_stages(feature, avg)
    # Convert to format required by the MI workflow
    coh += [out.isel(roi=[r]) for r in range(len(out['roi']))]
    stim += [out.attrs["stim"].astype(int)] \
        * len(out['roi'])
    del feature

###############################################################################
# MI Workflow
###############################################################################

# Convert to DatasetEphy
dt = DatasetEphy(coh, y=stim, nb_min_suj=10, times="times", roi="roi")

mi_type = 'cd'
inference = 'rfx'
kernel = None

if avg:
    mcp = "fdr"
else:
    mcp = "cluster"

estimator = GCMIEstimator(mi_type='cd',
                          copnorm=True,
                          biascorrect=True,
                          demeaned=False,
                          tensor=True,
コード例 #18
0
                       dims=('epochs', 'channels', 'times'),
                       coords=(epochs, ch[k], times))
    # finally, replace it in the original list
    x_xr.append(arr_xr)
print(x_xr[0])

###############################################################################
# Build the dataset
# -----------------
#
# Finally, we pass the data to the :class:`frites.dataset.DatasetEphy` class
# in order to create the dataset

# here, we specify to the DatasetEphy class that the roi dimension is actually
# called 'channels' in the DataArray and the times dimension is called 'times'
dt = DatasetEphy(x_xr, roi='channels', times='times')
print(dt)

print('Time vector : ', dt.times)
print('ROI (first subject) : ', dt.roi[0])

###############################################################################
# MultiIndex support
# ------------------
#
# DataArray also supports multi-indexing of a single dimension.

# create a continuous regressor (prediction error, delta P etc.)
dp = np.random.uniform(-1, 1, (n_epochs, ))
# create a discret variable (e.g experimental conditions)
cond = np.array([0] * 5 + [1] * 5)
コード例 #19
0
# electrophysiological data and your discret variable, you are looking for
# recording sites and time-points of data that correlates with conditions. This
# kind of analysis is similar to what is done in machine-learning. First,
# extract the conditions from the random dataset generated above.

x, y, _ = sim_mi_cd(x, snr=1., n_conditions=3)
# print the conditions for the single subject
print(y[0])

###############################################################################
# Define the electrophysiological dataset
# ---------------------------------------
#
# Now we define an instance of :class:`frites.dataset.DatasetEphy`

dt = DatasetEphy(x, y=y, roi=roi, times=time)

###############################################################################
# Compute the mutual information
# ------------------------------
#
# Once we have the dataset instance, we can then define an instance of workflow
# :class:`frites.workflow.WfMi`. This instance is used to compute the mutual
# information

# mutual information type ('cd' = continuous / discret)
mi_type = 'cd'

# define the workflow
wf = WfMi(mi_type=mi_type, verbose=False)
# compute the mutual information
コード例 #20
0
ファイル: plot_wf_mi_cc.py プロジェクト: meronvermaas/frites
sl = slice(40, 60)
y = [x[k][..., sl].mean(axis=(1, 2)) for k in range(len(x))]

###############################################################################
# .. note::
#     Taking the mean across time points and space is exactly the behavior of
#     the function :func:`frites.simulations.sim_mi_cc`

###############################################################################
# Define the electrophysiological dataset
# ---------------------------------------
#
# Now we define an instance of :class:`frites.dataset.DatasetEphy`

dt = DatasetEphy(x, y, roi)

###############################################################################
# Compute the mutual information
# ------------------------------
#
# Once we have the dataset instance, we can then define an instance of workflow
# :class:`frites.workflow.WfMi`. This instance is used to compute the mutual
# information

# mutual information type ('cc' = continuous / continuous)
mi_type = 'cc'

# define the workflow
wf = WfMi(mi_type, inference='ffx')
# compute the mutual information without permutations
コード例 #21
0
ファイル: plot_conn.py プロジェクト: meronvermaas/frites
#
# Bellow, we start by simulating some distant correlations by injecting the
# activity of an ROI to another
for k in range(n_subjects):
    x[k][:, [1], slice(20, 40)] += x[k][:, [0], slice(20, 40)]
    x[k][:, [2], slice(60, 80)] += x[k][:, [3], slice(60, 80)]
print(f'Corr 1 : {roi[0][0]}-{roi[0][1]} between [{times[20]}-{times[40]}]')
print(f'Corr 2 : {roi[0][2]}-{roi[0][3]} between [{times[60]}-{times[80]}]')

###############################################################################
# Define the electrophysiological dataset
# ---------------------------------------
#
# Now we define an instance of :class:`frites.dataset.DatasetEphy`

dt = DatasetEphy(x, roi=roi, times=times)

###############################################################################
# Compute the pairwise connectivity
# ---------------------------------
#
# Once we have the dataset instance, we can then define an instance of workflow
# :class:`frites.workflow.WfComod`. This instance is then used to compute the
# pairwise connectivity

n_perm = 100  # number of permutations to compute
kernel = np.hanning(10)  # used for smoothing the MI

wf = WfComod(kernel=kernel)
mi, pv = wf.fit(dt, n_perm=n_perm, n_jobs=1)
print(mi)
コード例 #22
0
ファイル: test_wf_conn.py プロジェクト: danieltomasz/frites
 def test_fit(self):
     ds = DatasetEphy(x, roi=roi, times=times)
     WfConnComod().fit(ds, **kw_conn)
コード例 #23
0
    # Load network feature
    feature = xr.load_dataarray(path_metric)
    # Average if needed
    out = average_stages(feature, avg)
    # Convert to format required by the MI workflow
    coh += [out.isel(roi=[r]) for r in range(len(out['roi']))]
    stim += [out.attrs["stim"].astype(int)] \
        * len(out['roi'])
    del feature

###############################################################################
# MI Workflow
###############################################################################

# Convert to DatasetEphy
dt = DatasetEphy(sxx, y=coh, z=stim, nb_min_suj=10, times="times", roi="roi")

mi_type = 'ccd'
inference = 'rfx'
kernel = None
estimator = GCMIEstimator(mi_type=mi_type,
                          relative=False,
                          copnorm=True,
                          biascorrect=False,
                          demeaned=False,
                          tensor=True,
                          gpu=False,
                          verbose=None)
wf = WfMi(mi_type, inference, verbose=True, kernel=kernel, estimator=estimator)

kw = dict(n_jobs=20, n_perm=100)
コード例 #24
0
# simulate multiple subjects and build the dataset container

x, y, roi = [], [], []
times = np.linspace(-1, 1, n_times)
freqs = np.linspace(60, 160, n_freqs)
for s, tr in zip(range(n_subjects), n_trials):
    # simulate the data coming from a single subject
    x_single_suj, y_single_suj = sim_single_subject(n_freqs, n_times, tr)
    # xarray conversion
    _x = xr.DataArray(x_single_suj,
                      dims=('trials', 'roi', 'freqs', 'times'),
                      coords=(y_single_suj, ['roi_0'], freqs, times))
    x += [_x]

# define an instance of DatasetEphy
ds = DatasetEphy(x, y='trials', roi='roi', times='times')

###############################################################################
# Compute the mutual information
###############################################################################
# Then we compute the quantity of information shared by the time-frequency data
# and the continuous regressor

# compute the mutual information
wf = WfMi(inference='ffx', mi_type='cc')
mi, pv = wf.fit(ds, n_perm=200, mcp='cluster', random_state=0, n_jobs=1)

###############################################################################
# plot the mutual information and p-values

plt.figure(figsize=(10, 4))
コード例 #25
0
    # generate some random channel names
    ch_suj = np.array([f"ch_{r}" for r in range(n_channels)])
    # concatenate in a list
    x.append(x_suj)
    ch.append(ch_suj)
# finally lets create a time vector
times = np.arange(n_times) / sf

###############################################################################
# Create the dataset
# ------------------
#
# The creation of the dataset is performed using the class
# :class:`frites.dataset.DatasetEphy`

dt = DatasetEphy(x.copy(), roi=ch, times=times)
print(dt)

plt.plot(dt.times, dt.x[0][:, 0, :].T)
plt.xlabel('Times')
plt.title('Electrophysiological data of the first subject, for the first '
          'channel')
plt.show()

###############################################################################
# Data smoothing
# --------------
#
# If you have MNE-Python installed, you can also smooth the data using
# :class:`frites.dataset.DatasetEphy.savgol_filter`. One important thing is
# that operations are performed inplace, which means that once launched, the
コード例 #26
0
ファイル: test_ds_ephy.py プロジェクト: danieltomasz/frites
 def test_nb_min_suj(self):
     """Test if the selection based on a minimum number of subjects."""
     d_3d = self._get_data(3)
     roi = [['r2', 'r1', 'r0', 'r3', 'r4'], ['r0', 'r1', 'r5', 'r6', 'r7']]
     # nb_min_suj = -inf
     ds = DatasetEphy(d_3d, roi=roi, nb_min_suj=None, **kw)
     assert len(ds.roi_names) == 8
     ds.get_connectivity_pairs(directed=False, as_blocks=True)[0]
     df = ds.get_connectivity_pairs(directed=False)[0]
     assert len(df) == 19
     ds.get_connectivity_pairs(directed=True, as_blocks=True)[0]
     df = ds.get_connectivity_pairs(directed=True)[0]
     assert len(df) == 38
     # nb_min_suj = 2
     ds = DatasetEphy(d_3d, roi=roi, nb_min_suj=2, **kw)
     assert len(ds.roi_names) == 2
     ds.get_connectivity_pairs(directed=False, as_blocks=True)[0]
     df = ds.get_connectivity_pairs(directed=False)[0]
     assert len(df) == 1
     ds.get_connectivity_pairs(directed=True, as_blocks=True)[0]
     df = ds.get_connectivity_pairs(directed=True)[0]
     assert len(df) == 2
コード例 #27
0
    # initialize subject's data with random noise
    _x = np.random.rand(n_trials, 2, n_times)
    # normal continuous regressor
    _y = np.random.normal(size=(n_trials, ))

    # first contact has positive correlations
    _x[:, 0, slice(30, 70)] += _y.reshape(-1, 1)
    # second contact has negative correlations
    _x[:, 1, slice(30, 70)] -= _y.reshape(-1, 1)

    x += [_x]
    y += [_y]
    roi += [np.array(['roi_0', 'roi_0'])]

# now, compute the mi with default parameters
ds = DatasetEphy(x, y=y, roi=roi, times=times, agg_ch=True)
mi = WfMi(mi_type='cc').fit(ds, mcp='noperm')[0]

# compute the mi at the contact level
ds = DatasetEphy(x, y=y, roi=roi, times=times, agg_ch=False)
mi_c = WfMi(mi_type='ccd').fit(ds, mcp='noperm')[0]

# plot the comparison
plt.figure()
plt.plot(times, mi, label="MI across contacts")
plt.plot(times, mi_c, label="MI at the contact level")
plt.legend()
plt.title('I(C; C)')
plt.show()

###############################################################################
コード例 #28
0
ファイル: test_ds_ephy.py プロジェクト: danieltomasz/frites
 def test_savgol_filter(self):
     """Test function savgol_filter."""
     d_3d = self._get_data(3)
     ds = DatasetEphy(d_3d, times='times', **kw)
     ds.savgol_filter(10., verbose=False)
コード例 #29
0
ファイル: test_ds_ephy.py プロジェクト: danieltomasz/frites
 def test_builtin(self):
     """Test function builtin."""
     d_3d = self._get_data(3)
     ds = DatasetEphy(d_3d, y='y', z='z', **kw)
コード例 #30
0
# Once the data have been created, we simulate an increase of mutual
# information by creating a continuous variable `y` using the function
# :func:`frites.simulations.sim_mi_cc`. This allows to simulate model-based
# analysis by computing $I(data; y)$ where `data` and `y` are two continuous
# variables

y, _ = sim_mi_cc(data, snr=.1)

###############################################################################
# Create an electrophysiological dataset
# --------------------------------------
#
# Now, we use the :class:`frites.dataset.DatasetEphy` in order to create a
# compatible electrophysiological dataset

dt = DatasetEphy(data, y, roi=roi, times=time, verbose=False)

###############################################################################
# Define the workflow
# -------------------
#
# We now define the workflow for computing mi and evaluate statistics using the
# class :class:`frites.workflow.WfMi`. Here, the type of mutual
# information to perform is 'cc' between it's computed between two continuous
# variables. And we also specify the inference type 'ffx' for fixed-effect

mi_type = 'cc'
inference = 'ffx'
kernel = np.hanning(10)
wf = WfMi(mi_type, inference, verbose=False, kernel=kernel)