コード例 #1
0
    def test_poly_kernel(self):
        # Tests polynomial kernel of svc.
        X1 = Distribution.linear(pts=50,
                                 mean=[8, 20],
                                 covr=[[1.5, 1], [1, 2]],
                                 seed=100)
        X2 = Distribution.linear(pts=50,
                                 mean=[8, 15],
                                 covr=[[1.5, -1], [-1, 2]],
                                 seed=100)

        X3 = Distribution.linear(pts=50,
                                 mean=[15, 20],
                                 covr=[[1.5, 1], [1, 2]],
                                 seed=100)
        X4 = Distribution.linear(pts=50,
                                 mean=[15, 15],
                                 covr=[[1.5, -1], [-1, 2]],
                                 seed=100)

        X1 = np.vstack((X1, X2))
        X2 = np.vstack((X3, X4))

        Y1 = np.ones(X1.shape[0])
        Y2 = -np.ones(X2.shape[0])

        X_train = np.vstack((X1, X2))
        y_train = np.hstack((Y1, Y2))

        clf = svm.SVC(kernel='polynomial', const=1, degree=2)
        clf.fit(X_train, y_train)

        X1 = Distribution.linear(pts=5,
                                 mean=[8, 20],
                                 covr=[[1.5, 1], [1, 2]],
                                 seed=100)
        X2 = Distribution.linear(pts=5,
                                 mean=[8, 15],
                                 covr=[[1.5, -1], [-1, 2]],
                                 seed=100)

        X3 = Distribution.linear(pts=5,
                                 mean=[15, 20],
                                 covr=[[1.5, 1], [1, 2]],
                                 seed=100)
        X4 = Distribution.linear(pts=5,
                                 mean=[15, 15],
                                 covr=[[1.5, -1], [-1, 2]],
                                 seed=100)

        X1 = np.vstack((X1, X2))
        X2 = np.vstack((X3, X4))

        Y1 = np.ones(X1.shape[0])
        Y2 = -np.ones(X2.shape[0])

        X_test = np.vstack((X1, X2))
        y_test = np.hstack((Y1, Y2))

        predictions, projections = clf.predict(X_test, return_projection=True)
        expected_projections = np.array([
            1.2630574, 1.3302442, 1.502788, 1.2003369, 1.4567516, 1.0555044,
            1.434326, 1.4227715, 1.1069533, 1.104987, -1.6992458, -1.5001097,
            -1.0005158, -1.8284273, -1.0863144, -2.238042, -1.2274336,
            -1.2235101, -2.1250129, -2.0870237
        ])
        expected_projections = np.array([
            1.9282368, 4.1053743, 4.449601, 2.8149981, 3.337817, 1.5934888,
            4.237419, 3.699658, 3.8548565, 2.8402433, -6.7378554, -2.9163127,
            -2.5978136, -4.833237, -4.421687, -5.2333884, -2.2744238,
            -3.0598483, -2.4422958, -3.890006
        ], )
        self.assertTrue(np.allclose(projections, expected_projections))
        self.assertTrue(np.allclose(predictions, y_test))
コード例 #2
0
    def test_multiclass(self):
        X1 = Distribution.radial_binary(pts=10,
                                        mean=[0, 0],
                                        st=1,
                                        ed=2,
                                        seed=100)
        X2 = Distribution.radial_binary(pts=10,
                                        mean=[0, 0],
                                        st=4,
                                        ed=5,
                                        seed=100)
        X3 = Distribution.radial_binary(pts=10,
                                        mean=[0, 0],
                                        st=6,
                                        ed=7,
                                        seed=100)
        X4 = Distribution.radial_binary(pts=10,
                                        mean=[0, 0],
                                        st=8,
                                        ed=9,
                                        seed=100)

        Y1 = -np.ones(X1.shape[0])
        Y2 = np.ones(X2.shape[0])
        Y3 = 2 * np.ones(X3.shape[0])
        Y4 = 3000 * np.ones(X4.shape[0])

        X_train = np.vstack((X1, X2, X3, X4))
        y_train = np.hstack((Y1, Y2, Y3, Y4))

        clf = svm.SVC(kernel='rbf', gamma=10)
        clf.fit(X_train, y_train)

        X1 = Distribution.radial_binary(pts=10,
                                        mean=[0, 0],
                                        st=1,
                                        ed=2,
                                        seed=100)
        X2 = Distribution.radial_binary(pts=10,
                                        mean=[0, 0],
                                        st=4,
                                        ed=5,
                                        seed=100)
        X3 = Distribution.radial_binary(pts=10,
                                        mean=[0, 0],
                                        st=6,
                                        ed=7,
                                        seed=100)
        X4 = Distribution.radial_binary(pts=10,
                                        mean=[0, 0],
                                        st=8,
                                        ed=9,
                                        seed=100)

        X_test = np.vstack((X1, X2, X3, X4))

        _, projections = clf.predict(X_test, return_projection=True)

        expected_projections = np.array([
            1.23564788, 1.15519477, 1.32441802, 1.04496554, 1.29740627, 0.,
            1.25561797, 1.22925452, 0., 1.11920321, 0.2991908, 0.23818634,
            0.55359011, 0.29655677, 0., 0.59992803, 0.52733203, 0.30456398,
            0.6027897, 0.33755249, 0., 0.04997651, 0.12099712, 0.12276944, 0.,
            0.19631702, 0.11836214, 0.06221966, 0.24539362, 0., 1.00000106,
            1.0000021, 1.00000092, 1.19952335, 1.00000283, 1.17741522,
            1.40596479, 1.60945299, 1.41534644, 1.27928235
        ])

        self.assertTrue(np.allclose(projections, expected_projections))