parser.add_argument( '--idx_path', default=None, help= 'filename of txt where each line is a data idx, used for rgb detection -- write <id>.txt for all frames. [default: None]' ) parser.add_argument('--dump_result', action='store_true', help='If true, also dump results to .pickle file') FLAGS = parser.parse_args() # Set training configurations BATCH_SIZE = FLAGS.batch_size MODEL_PATH = FLAGS.model_path GPU_INDEX = FLAGS.gpu NUM_POINT = FLAGS.num_point TEST_DATASET = FrustumDataset(NUM_POINT, FLAGS.kitti_path, BATCH_SIZE, FLAGS.split, data_dir='./rcnn_data_' + FLAGS.split, is_training=False, augmentX=1, random_shift=False, rotate_to_center=True, random_flip=False, use_gt_prop=False) test(TEST_DATASET, FLAGS.output + '.pickle', FLAGS.output)
FLAGS = parser.parse_args() # Set training configurations BATCH_SIZE = FLAGS.batch_size MODEL_PATH = FLAGS.model_path GPU_INDEX = FLAGS.gpu NUM_POINT = FLAGS.num_point MODEL = importlib.import_module(FLAGS.model) # NUM_CLASSES = 2 TEST_DATASET = FrustumDataset( NUM_POINT, '/data/ssd/public/jlliu/Kitti/object', BATCH_SIZE, 'val', save_dir= '/data/ssd/public/jlliu/frustum-pointnets/train/rpn_dataset_car_people/val', augmentX=1, random_shift=False, rotate_to_center=True, random_flip=False, fill_with_label=False) kitti_dataset = kitti_object('/data/ssd/public/jlliu/Kitti/object') def get_session_and_ops(batch_size, num_point): ''' Define model graph, load model parameters, create session and return session handle and tensors ''' with tf.Graph().as_default(): with tf.device('/gpu:' + str(GPU_INDEX)):
LOG_DIR = FLAGS.log_dir if not os.path.exists(LOG_DIR): os.mkdir(LOG_DIR) LOG_FOUT = open(os.path.join(LOG_DIR, 'log_train.txt'), 'w') LOG_FOUT.write(str(FLAGS) + '\n') BN_INIT_DECAY = 0.5 BN_DECAY_DECAY_RATE = 0.5 BN_DECAY_DECAY_STEP = float(DECAY_STEP) BN_DECAY_CLIP = 0.99 # load data set in background thread, remember to join data_loading_thread somewhere TRAIN_DATASET = FrustumDataset(NUM_POINT, '/data/ssd/public/jlliu/Kitti/object', BATCH_SIZE, 'train', data_dir='./rcnn_data_train', augmentX=5, random_shift=True, rotate_to_center=True, random_flip=True, use_gt_prop=FLAGS.use_gt_prop) TEST_DATASET = FrustumDataset(NUM_POINT, '/data/ssd/public/jlliu/Kitti/object', BATCH_SIZE, 'val', data_dir='./rcnn_data_val', augmentX=1, random_shift=False, rotate_to_center=True, random_flip=False, use_gt_prop=FLAGS.use_gt_prop) train_loading_thread = Thread(target=TRAIN_DATASET.load_buffer_repeatedly,