コード例 #1
0
ファイル: fast_rcnn.py プロジェクト: Anqw/FS3C
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import logging
import numpy as np
import torch
from fvcore.nn import smooth_l1_loss
from torch import nn
from torch.nn import functional as F

from fs3c.layers import batched_nms, cat
from fs3c.structures import Boxes, Instances
from fs3c.utils.events import get_event_storage
from fs3c.utils.registry import Registry

ROI_HEADS_OUTPUT_REGISTRY = Registry("ROI_HEADS_OUTPUT")
ROI_HEADS_OUTPUT_REGISTRY.__doc__ = """
Registry for the output layers in ROI heads in a generalized R-CNN model."""

logger = logging.getLogger(__name__)
"""
Shape shorthand in this module:

    N: number of images in the minibatch
    R: number of ROIs, combined over all images, in the minibatch
    Ri: number of ROIs in image i
    K: number of foreground classes. E.g.,there are 80 foreground classes in COCO.

Naming convention:

    deltas: refers to the 4-d (dx, dy, dw, dh) deltas that parameterize the box2box
    transform (see :class:`box_regression.Box2BoxTransform`).
コード例 #2
0
ファイル: roi_heads.py プロジェクト: Anqw/final
from fs3c.layers import ShapeSpec
from fs3c.structures import Boxes, Instances, pairwise_iou
from fs3c.utils.events import get_event_storage
from fs3c.utils.registry import Registry

from ..backbone.resnet import BottleneckBlock, make_stage
from ..box_regression import Box2BoxTransform
from ..matcher import Matcher
from ..poolers import ROIPooler
from ..proposal_generator.proposal_utils import add_ground_truth_to_proposals
from ..sampling import subsample_labels
from .box_head import build_box_head
from .fast_rcnn import FastRCNNOutputLayers, FastRCNNOutputs, ROI_HEADS_OUTPUT_REGISTRY

ROI_HEADS_REGISTRY = Registry("ROI_HEADS")
ROI_HEADS_REGISTRY.__doc__ = """
Registry for ROI heads in a generalized R-CNN model.
ROIHeads take feature maps and region proposals, and
perform per-region computation.

The registered object will be called with `obj(cfg, input_shape)`.
The call is expected to return an :class:`ROIHeads`.
"""

logger = logging.getLogger(__name__)


def build_roi_heads(cfg, input_shape):
    """
    Build ROIHeads defined by `cfg.MODEL.ROI_HEADS.NAME`.
    """
コード例 #3
0
ファイル: build.py プロジェクト: Anqw/FS3C
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
from fs3c.layers import ShapeSpec
from fs3c.utils.registry import Registry

from .backbone import Backbone

BACKBONE_REGISTRY = Registry("BACKBONE")
BACKBONE_REGISTRY.__doc__ = """
Registry for backbones, which extract feature maps from images

The registered object must be a callable that accepts two arguments:

1. A :class:`fs3c.config.CfgNode`
2. A :class:`fs3c.layers.ShapeSpec`, which contains the input shape specification.

It must returns an instance of :class:`Backbone`.
"""


def build_backbone(cfg, input_shape=None):
    """
    Build a backbone from `cfg.MODEL.BACKBONE.NAME`.

    Returns:
        an instance of :class:`Backbone`
    """
    if input_shape is None:
        input_shape = ShapeSpec(channels=len(cfg.MODEL.PIXEL_MEAN))

    backbone_name = cfg.MODEL.BACKBONE.NAME
    backbone = BACKBONE_REGISTRY.get(backbone_name)(cfg, input_shape)
コード例 #4
0
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
from fs3c.utils.registry import Registry

META_ARCH_REGISTRY = Registry("META_ARCH")  # noqa F401 isort:skip
META_ARCH_REGISTRY.__doc__ = """
Registry for meta-architectures, i.e. the whole model.

The registered object will be called with `obj(cfg)`
and expected to return a `nn.Module` object.
"""


def build_model(cfg):
    """
    Built the whole model, defined by `cfg.MODEL.META_ARCHITECTURE`.
    """
    meta_arch = cfg.MODEL.META_ARCHITECTURE
    return META_ARCH_REGISTRY.get(meta_arch)(cfg)
コード例 #5
0
ファイル: box_head.py プロジェクト: Anqw/FS3C
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import numpy as np
import fvcore.nn.weight_init as weight_init
import torch
from torch import nn
from torch.nn import functional as F

from fs3c.layers import Conv2d, ShapeSpec, get_norm
from fs3c.utils.registry import Registry

ROI_BOX_HEAD_REGISTRY = Registry("ROI_BOX_HEAD")
ROI_BOX_HEAD_REGISTRY.__doc__ = """
Registry for box heads, which make box predictions from per-region features.

The registered object will be called with `obj(cfg, input_shape)`.
"""


@ROI_BOX_HEAD_REGISTRY.register()
class FastRCNNConvFCHead(nn.Module):
    """
    A head with several 3x3 conv layers (each followed by norm & relu) and
    several fc layers (each followed by relu).
    """
    def __init__(self, cfg, input_shape: ShapeSpec):
        """
        The following attributes are parsed from config:
            num_conv, num_fc: the number of conv/fc layers
            conv_dim/fc_dim: the dimension of the conv/fc layers
            norm: normalization for the conv layers
        """
コード例 #6
0
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
from fs3c.utils.registry import Registry

PROPOSAL_GENERATOR_REGISTRY = Registry("PROPOSAL_GENERATOR")
PROPOSAL_GENERATOR_REGISTRY.__doc__ = """
Registry for proposal generator, which produces object proposals from feature maps.

The registered object will be called with `obj(cfg, input_shape)`.
The call should return a `nn.Module` object.
"""

from . import rpn  # noqa F401 isort:skip


def build_proposal_generator(cfg, input_shape):
    """
    Build a proposal generator from `cfg.MODEL.PROPOSAL_GENERATOR.NAME`.
    The name can be "PrecomputedProposals" to use no proposal generator.
    """
    name = cfg.MODEL.PROPOSAL_GENERATOR.NAME
    if name == "PrecomputedProposals":
        return None

    return PROPOSAL_GENERATOR_REGISTRY.get(name)(cfg, input_shape)