コード例 #1
0
def run_dsm(input_option, args):
    ######## preprocessing traces & trace sampling ###########
    input_sampler.select_traces(input_option.raw_input_trace_file,
                                input_option.cluster_trace_file)
    ######## train RNNLM model ########
    if not os.path.isdir(input_option.save_dir):

        os.makedirs(input_option.save_dir)

        p = multiprocessing.Process(target=RNNLM_training.train, args=(args, ))
        p.start()
        p.join()
        # RNNLM_training.train(input_option.args)
    ######## feature extraction ########
    feature_extractor.feature_engineering(input_option)
    ######## clustering ########
    clustering_processing.clustering_step(input_option)
    ######## model selection #######
    final_file = model_selection.selecting_model(input_option)
    print("Done! Final FSM is stored in", final_file)
コード例 #2
0
    if not os.path.isdir(input_option.args.save_dir) or (
            input_option.args.additional_trace is not None
            and input_option.args.init_from is not None):
        if not os.path.isdir(input_option.args.save_dir):
            os.makedirs(input_option.args.save_dir)
        p = multiprocessing.Process(target=RNNLM_training.train,
                                    args=(input_option.args, ))
        p.start()
        p.join()
        #RNNLM_training.train(input_option.args)s

    ######## feature extraction ########

    feature_extractor.feature_engineering(input_option)

    ######## clustering ########

    clustering_processing.clustering_step(input_option)

    ######## model selection #######

    final_file = model_selection.selecting_model(input_option)

    print("Done! Final FSM is stored in", final_file)

    ######## merge two automata ######

    if input_option.update_mode:

        model_updater.update(input_option)