コード例 #1
0
ファイル: test_reduce.py プロジェクト: lds2/fuchsia
    def assertReductionWorks(t, filename):
        M = import_matrix_from_file(filename)
        x, eps = SR.var("x eps")
        t.assertIn(x, M.variables())
        M_pranks = singularities(M, x).values()
        t.assertNotEqual(M_pranks, [0] * len(M_pranks))

        #1 Fuchsify
        m, t1 = simplify_by_factorization(M, x)
        Mf, t2 = fuchsify(m, x)
        Tf = t1 * t2
        t.assertTrue((Mf - transform(M, x, Tf)).simplify_rational().is_zero())
        Mf_pranks = singularities(Mf, x).values()
        t.assertEqual(Mf_pranks, [0] * len(Mf_pranks))

        #2 Normalize
        t.assertFalse(is_normalized(Mf, x, eps))
        m, t1 = simplify_by_factorization(Mf, x)
        Mn, t2 = normalize(m, x, eps)
        Tn = t1 * t2
        t.assertTrue((Mn - transform(Mf, x, Tn)).simplify_rational().is_zero())
        t.assertTrue(is_normalized(Mn, x, eps))

        #3 Factorize
        t.assertIn(eps, Mn.variables())
        m, t1 = simplify_by_factorization(Mn, x)
        Mc, t2 = factorize(m, x, eps, seed=3)
        Tc = t1 * t2
        t.assertTrue((Mc - transform(Mn, x, Tc)).simplify_rational().is_zero())
        t.assertNotIn(eps, (Mc / eps).simplify_rational().variables())
コード例 #2
0
    def test_reduce_at_one_point_1(t):
        x = SR.var("x")
        M0 = matrix([[1 / x, 4, 0, 5], [0, 2 / x, 0, 0], [0, 0, 3 / x, 6],
                     [0, 0, 0, 4 / x]])

        u = matrix([[0, Rational((3, 5)),
                     Rational((4, 5)), 0],
                    [Rational((5, 13)), 0, 0,
                     Rational((12, 13))]])
        M1 = transform(M0, x, balance(u.transpose() * u, 0, 1, x))
        M1 = M1.simplify_rational()

        u = matrix([[8, 0, 15, 0]]) / 17
        M2 = transform(M1, x, balance(u.transpose() * u, 0, 2, x))
        M2 = M2.simplify_rational()

        M2_sing = singularities(M2, x)
        t.assertIn(0, M2_sing)
        t.assertEqual(M2_sing[0], 2)

        M3, T23 = reduce_at_one_point(M2, x, 0, 2)
        M3 = M3.simplify_rational()
        t.assertEqual(M3, transform(M2, x, T23).simplify_rational())

        M3_sing = singularities(M3, x)
        t.assertIn(0, M3_sing)
        t.assertEqual(M3_sing[0], 1)

        M4, T34 = reduce_at_one_point(M3, x, 0, 1)
        M4 = M4.simplify_rational()
        t.assertEqual(M4, transform(M3, x, T34).simplify_rational())

        M4_sing = singularities(M4, x)
        t.assertIn(0, M4_sing)
        t.assertEqual(M4_sing[0], 0)
コード例 #3
0
ファイル: test_cli.py プロジェクト: lds2/fuchsia
 def assertIsReduced(t, m_path, x_name, eps_name):
     M = fuchsia.import_matrix_from_file(m_path)
     x = SR.var(x_name)
     eps = SR.var(eps_name)
     pranks = fuchsia.singularities(M, x).values()
     t.assertEqual(pranks, [0]*len(pranks))
     t.assertTrue(eps not in (M/eps).simplify_rational().variables())
コード例 #4
0
    def test_normalize_5(t):
        # An unnormalizable example by A. A. Bolibrukh
        x, e = SR.var("x eps")
        b = import_matrix_from_file("test/data/bolibrukh.mtx")
        f, ft = fuchsify(b, x)
        f_pranks = singularities(f, x).values()
        t.assertEqual(f_pranks, [0] * len(f_pranks))

        with t.assertRaises(FuchsiaError):
            n, nt = normalize(f, x, e)
コード例 #5
0
    def test_normalize_1(t):
        # Test with apparent singularities at 0 and oo, but not at 1.
        x = SR.var("x")
        M = matrix([[1 / x, 5 / (x - 1), 0, 6 / (x - 1)], [0, 2 / x, 0, 0],
                    [0, 0, 3 / x, 7 / (x - 1)], [6 / (x - 1), 0, 0, 1 / x]])

        N, T = normalize(M, x, SR.var("epsilon"))
        N = N.simplify_rational()
        t.assertEqual(N, transform(M, x, T).simplify_rational())
        for point, prank in singularities(N, x).iteritems():
            R = matrix_c0(N, x, point, prank)
            evlist = R.eigenvalues()
            t.assertEqual(evlist, [0] * len(evlist))
コード例 #6
0
ファイル: test_epsilon_form.py プロジェクト: lds2/fuchsia
    def assertReductionWorks(test, filename, fuchsian=False):
        m = import_matrix_from_file(filename)
        x, eps = SR.var("x eps")
        test.assertIn(x, m.variables())

        if not fuchsian:
            m_pranks = singularities(m, x).values()
            test.assertNotEqual(m_pranks, [0]*len(m_pranks))

        mt, t = epsilon_form(m, x, eps)
        test.assertTrue((mt-transform(m, x, t)).simplify_rational().is_zero())
        test.assertTrue(is_fuchsian(mt, x))
        test.assertTrue(is_normalized(mt, x, eps))
        test.assertNotIn(eps, (mt/eps).simplify_rational().variables())
コード例 #7
0
    def assertNormalizeBlocksWorks(test, filename):
        x, eps = SR.var("x eps")

        m = import_matrix_from_file(filename)
        test.assertIn(x, m.variables())
        test.assertIn(eps, m.variables())
        test.assertFalse(is_normalized(m, x, eps))

        m_pranks = singularities(m, x).values()
        test.assertNotEqual(m_pranks, [0] * len(m_pranks))

        m, t, b = block_triangular_form(m)
        mt, tt = reduce_diagonal_blocks(m, x, eps, b=b)
        t = t * tt
        test.assertTrue(
            (mt - transform(m, x, t)).simplify_rational().is_zero())
        test.assertTrue(are_diagonal_blocks_reduced(mt, b, x, eps))
コード例 #8
0
    def test_fuchsify_2(t):
        x = SR.var("x")
        M = matrix([[0, 1 / x / (x - 1), 0, 0], [0, 0, 0, 0], [0, 0, 0, 0],
                    [0, 0, 0, 0]])
        u = matrix([[6, 3, 2, 0]]) / 7
        P = u.transpose() * u
        M = balance_transform(M, P, 1, 0, x).simplify_rational()
        M = balance_transform(M, P, 1, 0, x).simplify_rational()
        M = balance_transform(M, P, 1, 0, x).simplify_rational()
        M = balance_transform(M, P, 1, 0, x).simplify_rational()
        M = balance_transform(M, P, 1, 0, x).simplify_rational()

        MM, T = fuchsify(M, x)
        MM = MM.simplify_rational()
        t.assertEqual(MM, transform(M, x, T).simplify_rational())

        pranks = singularities(MM, x).values()
        t.assertEqual(pranks, [0] * len(pranks))
コード例 #9
0
    def test_fuchsify_1(t):
        x = SR.var("x")
        M = matrix([[1 / x, 5, 0, 6], [0, 2 / x, 0, 0], [0, 0, 3 / x, 7],
                    [0, 0, 0, 4 / x]])

        u = matrix([[0, Rational((3, 5)),
                     Rational((4, 5)), 0],
                    [Rational((5, 13)), 0, 0,
                     Rational((12, 13))]])
        M = transform(M, x, balance(u.transpose() * u, 0, 1, x))
        M = M.simplify_rational()

        u = matrix([[8, 0, 15, 0]]) / 17
        M = transform(M, x, balance(u.transpose() * u, 0, 2, x))
        M = M.simplify_rational()

        Mx, T = fuchsify(M, x)
        Mx = Mx.simplify_rational()
        t.assertEqual(Mx, transform(M, x, T).simplify_rational())

        pranks = singularities(Mx, x).values()
        t.assertEqual(pranks, [0] * len(pranks))
コード例 #10
0
ファイル: test_cli.py プロジェクト: lds2/fuchsia
 def assertIsFuchsian(t, m_path, x_name):
     M = fuchsia.import_matrix_from_file(m_path)
     x = SR.var(x_name)
     pranks = fuchsia.singularities(M, x).values()
     t.assertEqual(pranks, [0]*len(pranks))