def assertReductionWorks(t, filename): M = import_matrix_from_file(filename) x, eps = SR.var("x eps") t.assertIn(x, M.variables()) M_pranks = singularities(M, x).values() t.assertNotEqual(M_pranks, [0] * len(M_pranks)) #1 Fuchsify m, t1 = simplify_by_factorization(M, x) Mf, t2 = fuchsify(m, x) Tf = t1 * t2 t.assertTrue((Mf - transform(M, x, Tf)).simplify_rational().is_zero()) Mf_pranks = singularities(Mf, x).values() t.assertEqual(Mf_pranks, [0] * len(Mf_pranks)) #2 Normalize t.assertFalse(is_normalized(Mf, x, eps)) m, t1 = simplify_by_factorization(Mf, x) Mn, t2 = normalize(m, x, eps) Tn = t1 * t2 t.assertTrue((Mn - transform(Mf, x, Tn)).simplify_rational().is_zero()) t.assertTrue(is_normalized(Mn, x, eps)) #3 Factorize t.assertIn(eps, Mn.variables()) m, t1 = simplify_by_factorization(Mn, x) Mc, t2 = factorize(m, x, eps, seed=3) Tc = t1 * t2 t.assertTrue((Mc - transform(Mn, x, Tc)).simplify_rational().is_zero()) t.assertNotIn(eps, (Mc / eps).simplify_rational().variables())
def test_reduce_at_one_point_1(t): x = SR.var("x") M0 = matrix([[1 / x, 4, 0, 5], [0, 2 / x, 0, 0], [0, 0, 3 / x, 6], [0, 0, 0, 4 / x]]) u = matrix([[0, Rational((3, 5)), Rational((4, 5)), 0], [Rational((5, 13)), 0, 0, Rational((12, 13))]]) M1 = transform(M0, x, balance(u.transpose() * u, 0, 1, x)) M1 = M1.simplify_rational() u = matrix([[8, 0, 15, 0]]) / 17 M2 = transform(M1, x, balance(u.transpose() * u, 0, 2, x)) M2 = M2.simplify_rational() M2_sing = singularities(M2, x) t.assertIn(0, M2_sing) t.assertEqual(M2_sing[0], 2) M3, T23 = reduce_at_one_point(M2, x, 0, 2) M3 = M3.simplify_rational() t.assertEqual(M3, transform(M2, x, T23).simplify_rational()) M3_sing = singularities(M3, x) t.assertIn(0, M3_sing) t.assertEqual(M3_sing[0], 1) M4, T34 = reduce_at_one_point(M3, x, 0, 1) M4 = M4.simplify_rational() t.assertEqual(M4, transform(M3, x, T34).simplify_rational()) M4_sing = singularities(M4, x) t.assertIn(0, M4_sing) t.assertEqual(M4_sing[0], 0)
def assertIsReduced(t, m_path, x_name, eps_name): M = fuchsia.import_matrix_from_file(m_path) x = SR.var(x_name) eps = SR.var(eps_name) pranks = fuchsia.singularities(M, x).values() t.assertEqual(pranks, [0]*len(pranks)) t.assertTrue(eps not in (M/eps).simplify_rational().variables())
def test_normalize_5(t): # An unnormalizable example by A. A. Bolibrukh x, e = SR.var("x eps") b = import_matrix_from_file("test/data/bolibrukh.mtx") f, ft = fuchsify(b, x) f_pranks = singularities(f, x).values() t.assertEqual(f_pranks, [0] * len(f_pranks)) with t.assertRaises(FuchsiaError): n, nt = normalize(f, x, e)
def test_normalize_1(t): # Test with apparent singularities at 0 and oo, but not at 1. x = SR.var("x") M = matrix([[1 / x, 5 / (x - 1), 0, 6 / (x - 1)], [0, 2 / x, 0, 0], [0, 0, 3 / x, 7 / (x - 1)], [6 / (x - 1), 0, 0, 1 / x]]) N, T = normalize(M, x, SR.var("epsilon")) N = N.simplify_rational() t.assertEqual(N, transform(M, x, T).simplify_rational()) for point, prank in singularities(N, x).iteritems(): R = matrix_c0(N, x, point, prank) evlist = R.eigenvalues() t.assertEqual(evlist, [0] * len(evlist))
def assertReductionWorks(test, filename, fuchsian=False): m = import_matrix_from_file(filename) x, eps = SR.var("x eps") test.assertIn(x, m.variables()) if not fuchsian: m_pranks = singularities(m, x).values() test.assertNotEqual(m_pranks, [0]*len(m_pranks)) mt, t = epsilon_form(m, x, eps) test.assertTrue((mt-transform(m, x, t)).simplify_rational().is_zero()) test.assertTrue(is_fuchsian(mt, x)) test.assertTrue(is_normalized(mt, x, eps)) test.assertNotIn(eps, (mt/eps).simplify_rational().variables())
def assertNormalizeBlocksWorks(test, filename): x, eps = SR.var("x eps") m = import_matrix_from_file(filename) test.assertIn(x, m.variables()) test.assertIn(eps, m.variables()) test.assertFalse(is_normalized(m, x, eps)) m_pranks = singularities(m, x).values() test.assertNotEqual(m_pranks, [0] * len(m_pranks)) m, t, b = block_triangular_form(m) mt, tt = reduce_diagonal_blocks(m, x, eps, b=b) t = t * tt test.assertTrue( (mt - transform(m, x, t)).simplify_rational().is_zero()) test.assertTrue(are_diagonal_blocks_reduced(mt, b, x, eps))
def test_fuchsify_2(t): x = SR.var("x") M = matrix([[0, 1 / x / (x - 1), 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]) u = matrix([[6, 3, 2, 0]]) / 7 P = u.transpose() * u M = balance_transform(M, P, 1, 0, x).simplify_rational() M = balance_transform(M, P, 1, 0, x).simplify_rational() M = balance_transform(M, P, 1, 0, x).simplify_rational() M = balance_transform(M, P, 1, 0, x).simplify_rational() M = balance_transform(M, P, 1, 0, x).simplify_rational() MM, T = fuchsify(M, x) MM = MM.simplify_rational() t.assertEqual(MM, transform(M, x, T).simplify_rational()) pranks = singularities(MM, x).values() t.assertEqual(pranks, [0] * len(pranks))
def test_fuchsify_1(t): x = SR.var("x") M = matrix([[1 / x, 5, 0, 6], [0, 2 / x, 0, 0], [0, 0, 3 / x, 7], [0, 0, 0, 4 / x]]) u = matrix([[0, Rational((3, 5)), Rational((4, 5)), 0], [Rational((5, 13)), 0, 0, Rational((12, 13))]]) M = transform(M, x, balance(u.transpose() * u, 0, 1, x)) M = M.simplify_rational() u = matrix([[8, 0, 15, 0]]) / 17 M = transform(M, x, balance(u.transpose() * u, 0, 2, x)) M = M.simplify_rational() Mx, T = fuchsify(M, x) Mx = Mx.simplify_rational() t.assertEqual(Mx, transform(M, x, T).simplify_rational()) pranks = singularities(Mx, x).values() t.assertEqual(pranks, [0] * len(pranks))
def assertIsFuchsian(t, m_path, x_name): M = fuchsia.import_matrix_from_file(m_path) x = SR.var(x_name) pranks = fuchsia.singularities(M, x).values() t.assertEqual(pranks, [0]*len(pranks))