コード例 #1
0
def gerador_de_caracteriticas():
    all_features = []

    for base in bases_B:
        features_list = []
        files.append(func.get_filenames(path=base, filetype='.wav'))

        for i in range(len(files[-1])):
            instance, rate = librosa.load(base + '/' + files[-1][i])
            features = func.extract_feature(instance, rate)

            # rotulacao
            if base == btraning_normal:
                features.append("Normal")
            elif base == btraning_mumur:
                features.append("Murmur")
            elif base == btraining_extrastole:
                features.append("Extrastole")

            features_list.append(features)
            all_features.append(features)
            print('Done with: ' + files[-1][i] + " - " + features[6])

        # escrita em arquivo CSV
        dir_db = os.path.basename(base)
        func.write_csv('librosa_features_of_' + dir_db, features_list)
        print('Done with: ' + base + '\n')

    os.chdir(path_B)
    func.write_csv("BaseB_librosa_features", all_features)
コード例 #2
0
def main_a():
    files = []
    all_features = []

    for base in bases_A:
        instances_list = []
        features_list = []
        filtered_instances_list = []
        files.append(func.get_filenames(
            path=base, filetype='.wav'))  # gera array com nome dos audios

        for i in range(len(files[-1])):
            # instance, rate = func.load_sound_files(base + '/' + files[-1][i])
            # rate, instance = wavfile.read(base + '/' + files[-1][i])
            instance, rate = librosa.load(base + '/' + files[-1][i])
            # [rate, instance] = audioBasicIO.readAudioFile(base + '/' + files[-1][i])

            instances_list.append(instance)

            # filtragem e decomposicao
            rec_signal = func.wavelet_filtering(instance, th, rate)
            filtered_instances_list.append(rec_signal)

            # extracao de caracteriticas
            features = func.extract_feature(instance, rate)  # librosa
            # features = audioFeatureExtraction.stFeatureExtraction(instance, rate, 0.5 * rate, 0.25 * rate)
            # features = audioFeatureExtraction.mtFeatureExtraction(
            #     instance, rate, 0.5 * rate, 0.5 * rate,0.25 * rate, 0.25 * rate
            # )

            # rotulacao
            if base == atraning_normal:
                features.append("Normal")
            elif base == atraning_mumur:
                features.append("Murmur")
            elif base == atraining_extrahls:
                features.append("Extra Heart Sound")
            elif base == atraining_artifact:
                features.append("Artifact")

            features_list.append(features)
            all_features.append(features)
            print('Done with: ' + files[-1][i])

        # escritas no CVS
        dir_db = os.path.basename(base)
        func.write_csv('librosa_filtered_features_of_' + dir_db, features_list)
        print('Done with: ' + base + '\n')

    os.chdir(path_A)
    func.write_csv("BaseA_librosa_filtered_features", all_features)
    print 'Done!'
コード例 #3
0
ファイル: test.py プロジェクト: Jules-Boogie/auditingdatasets
def test_write_csv():
    """
    Test procedure for the function write_csv()
    """
    print('Testing write_csv()')

    # Access the file relative to this one, not the user's terminal
    parent = os.path.split(__file__)[0]

    # First test (erase any existing file)
    fpath = os.path.join(parent, 'files', 'temp1.csv')
    open(fpath, 'w').close()
    func.write_csv(FILE1, fpath)

    # Check file was created
    introcs.assert_true(os.path.exists(fpath))

    file = open(fpath)
    actual = file.read()
    file.close()

    file = open(os.path.join(parent, 'files', 'writecsv1.csv'))
    correct = file.read()
    file.close()

    # Check to see if they are the same
    introcs.assert_equals(correct, actual)

    # Second test (erase any existing file)
    fpath = os.path.join(parent, 'files', 'temp2.csv')
    open(fpath, 'w').close()
    func.write_csv(FILE2, fpath)

    # Check file was created
    introcs.assert_true(os.path.exists(fpath))

    file = open(fpath)
    actual = file.read()
    file.close()

    file = open(os.path.join(parent, 'files', 'writecsv2.csv'))
    correct = file.read()
    file.close()

    # Check to see if they are the same
    introcs.assert_equals(correct, actual)
コード例 #4
0
def main_pn():
    files = []
    labels = []

    for base in bases_Physioef:
        instances_list = []
        features_list = []
        files.append(func.get_filenames(path=base, filetype='.wav'))
        labels.append(func.get_filenames(path=base, filetype='.hea'))

        for i in range(len(files[-1])):
            # instance, rate = func.load_sound_files(base + '/' + files[-1][i])
            # rate, instance = wavfile.read(base + '/' + files[-1][i])
            instance, rate = librosa.load(base + '/' + files[-1][i])

            # filtragem e decomposicao
            rec_signal = func.wavelet_filtering(instance, th)
            instances_list.append(rec_signal)

            # extracao de caracteriticas
            features = func.extract_feature(rec_signal, rate)

            # rotulacao physionet
            label_object = open(base + '/' + labels[-1][i], 'r')
            label = label_object.read().split('\n')[-2]
            features.append(label)

            # features = func.pyAudioAnalysis_features(recSignal, rate)
            features_list.append(features)

            print('Done with: ' + files[-1][i])

        func.write_csv(path_Physio + base[-1] + '_filtered', features_list)
        # dir_db = os.path.basename(base)
        # func.write_csv('librosa_features_of_' + dir_db, features_list)
        print('Done with: ' + base + '\n')
    print 'Done!'
コード例 #5
0
ファイル: main.py プロジェクト: bruno-lk/monografia
def main():
    files = []
    # instance = []
    labels = []
    file_paths = []

    files = func.get_filenames(mumur, '.wav')

    # carrega arquivos de audio
    for s in files:
        file_paths.append(mumur + '/' + s)
    instance, rates = func.load_sound_files(file_paths)

    # ecg = pywt.data.ecg() # dataset do pywavelets

    # Wavelet Daubechies order 6 (ortogonal)
    wavelet = pywt.Wavelet('db6')
    (phi, psi, x) = wavelet.wavefun()
    # wavelet = signal.daub(6)

    # identification
    print "Rotulo:", label[1]
    print "Nome Arquivo:", files[0]
    print "Frequencia (fs): ", rates[0]
    # print "\n", wavelet

    # filtragem e decomposicao
    decimateSignal = signal.decimate(instance[0], 10)  # decomposicao de sinal
    # y = func.butter_lowpass_filter(decimateSignal, lowcut, fs, order=6)  # passa baixa
    coeffs = pywt.wavedec(decimateSignal, 'db6',
                          level=4)  # transformada wavelet
    cA4, cD4, cD3, cD2, cD1 = coeffs

    cD4 = pywt.threshold(cD4, th, mode='less')
    cD3 = pywt.threshold(cD3, th, mode='less')
    cD2 = pywt.threshold(cD2, th, mode='less')
    cD1 = pywt.threshold(cD1, th, mode='less')

    coeffs = cA4, cD4, cD3, cD2, cD1

    # new_coeffs = []
    # aux = []
    # for cd in coeffs[1:]:
    #     for d in cd:
    #         if 288.0 >= d > 0.0:
    #             aux = np.append(aux, d)
    # new_coeffs.append(aux)

    # reconstrucao do sinal
    recSignal = pywt.waverec(coeffs, 'db6')

    # verifica se sinais sao iguais
    if np.array_equal(recSignal, instance[0]):
        print('! sinais iguais !')

    # smooth = signal.savgol_filter(recSignal, 5, 2)
    # print smooth

    # z = np.polyfit(smooth, , 3)
    # print z

    # std = np.std(smooth)
    # print "std", std
    # helper = []
    # for i, x in enumerate(smooth):
    #     if x > std:
    #         helper.append(i)
    #
    # print helper

    # Spectrogram
    # f, Pwelch_spec = signal.welch(recSignal, fs, scaling='spectrum')
    # plt.semilogy(f, Pwelch_spec)
    # plt.xlabel('frequency [Hz]')
    # plt.ylabel('PSD')
    # plt.grid()
    # plt.show()
    #
    # f = pywt.threshold(f, 195, mode='less')
    # plt.semilogy(f, Pwelch_spec)
    # plt.show()
    #
    # spectro = aF.stSpectogram(recSignal, rates[0], 0.05*rates[0], 0.025*rates[0], PLOT=True)
    # print spectro

    func.write_csv(files[0], recSignal)

    # Plotagem dos sinais
    func.plot_imagens(psi, 'Wavelet Daubechies de Ordem 6')  # wavelet

    func.plot_imagens(instance[0], 'sinal nao filtrado')
    # func.plot_imagens(decimateSignal, 'sinal reduzido - fator 10')

    func.plot_imagens(recSignal, 'sinal reconstruido')
    # func.plot_imagens(recSignal2, 'sinal reconstruido - upcoef')

    # func.plot_imagens(smooth, 'suavizacao triangular')
    # func.plot_imagens(z,'polyfit')

    plt.show()