コード例 #1
0
def test_generate_network_pairs_min_cosine(random_matrix, generate_network_f,
                                           pairs_min_cosine):
    """
        All cosine scores in outputted array should be strictly higher than
        pairs_min_cosine. Values lower than pairs_min_cosine and negative cosine
        scores should be filtered out.
        
    """

    mzs, matrix = random_matrix

    matrix = matrix.copy()

    matrix[0, 1] = matrix[1, 0] = pairs_min_cosine + 0.1
    matrix[0, 2] = matrix[2, 0] = pairs_min_cosine - 0.1

    interactions = generate_network_f(matrix, mzs, pairs_min_cosine, 0)

    seen1, seen2 = False, False
    for source, target, delta, cosine in interactions:
        assert cosine > pairs_min_cosine
        assert matrix[source, target] == cosine
        if (source == 0 and target == 1) or (source == 1 and target == 0):
            seen1 = True
        if (source == 0 and target == 2) or (source == 2 and target == 0):
            seen2 = True

    if matrix[0, 1] >= 0:
        assert seen1
    assert not seen2
コード例 #2
0
def test_generate_network_empty(generate_network_f):
    """An empty matrix should not throw an error but return an empty array.
    """

    matrix = np.empty((0, 0), dtype=np.float32)
    interactions = generate_network_f(matrix, [], 0.65, 10)

    assert interactions.size == 0
コード例 #3
0
def test_generate_network_all_zero(random_matrix, generate_network_f):
    """
        If all filtering parameters are set to zero, we should get all possibles
        interactions excluding self loops.
    """

    mzs, matrix = random_matrix

    max_size = np.count_nonzero(np.triu(matrix)) - matrix.shape[0]
    interactions = generate_network_f(matrix, mzs, 0, 0)

    assert interactions.shape[0] == max_size
コード例 #4
0
def test_generate_network_high_pairs_min_cosine(random_matrix,
                                                generate_network_f,
                                                pairs_min_cosine, top_k):
    """
        If pairs_min_cosine is higher than 1, we should get an empty array.
    """

    mzs, matrix = random_matrix

    interactions = generate_network_f(matrix, mzs, pairs_min_cosine, top_k)

    assert interactions.size == 0
コード例 #5
0
def test_generate_network_high_top_k(random_matrix, generate_network_f):
    """
        If top_k is high and pairs_min_cosine is zero, we should get all
        possibles interactions excluding self loops.
    """

    mzs, matrix = random_matrix

    max_size = np.count_nonzero(np.triu(matrix)) - matrix.shape[0]
    top_k = matrix.shape[0]
    interactions = generate_network_f(matrix, mzs, 0, top_k)

    assert interactions.shape[0] == max_size
コード例 #6
0
def test_generate_network_self_loop(random_matrix, generate_network_f,
                                    pairs_min_cosine, top_k):
    """
        Output array should not include self-loops
    """

    mzs, matrix = random_matrix

    interactions = generate_network_f(matrix, mzs, pairs_min_cosine, top_k)
    count = len(
        [source for source, target, _, _ in interactions if source == target])

    assert count == 0
コード例 #7
0
def test_generate_network_list_larger_than_matrix(random_matrix,
                                                  generate_network_f):
    """
        If list is larger than matrix, only part of the list will be used but
        no error should be thrown.
    """

    mzs, matrix = random_matrix

    mzs = mzs + [1200.14225, 258.4475]
    max_index = len(mzs)

    interactions = generate_network_f(matrix, mzs, 0, 10)

    assert max_index - 1 not in interactions['Source']
    assert max_index - 1 not in interactions['Target']
    assert max_index - 2 not in interactions['Source']
    assert max_index - 2 not in interactions['Target']
コード例 #8
0
def test_generate_network_matrix_larger_than_list(random_matrix,
                                                  generate_network_f):
    """
        If matrix is larger than list, only part of the matrix will be used but
        no error should be thrown.
    """

    mzs, matrix = random_matrix

    mzs = mzs[:-2]
    max_index = matrix.shape[0]

    interactions = generate_network_f(matrix, mzs, 0, 10)

    assert max_index - 1 not in interactions['Source']
    assert max_index - 1 not in interactions['Target']
    assert max_index - 2 not in interactions['Source']
    assert max_index - 2 not in interactions['Target']