コード例 #1
0
ファイル: mainfunction.py プロジェクト: lennepkade/dzetsaka
 def computeStatistics(self,inRaster,inShape,inField):
     try:
         rasterized = rasterize(inRaster,inShape,inField)
         Yp,Yt = dataraster.get_samples_from_roi(inRaster,rasterized)
         CONF = ai.CONFUSION_MATRIX()
         CONF.compute_confusion_matrix(Yp,Yt)
         self.confusion_matrix = CONF.confusion_matrix
         self.Kappa = CONF.Kappa
         self.OA = CONF.OA
     except:
         pushFeedback('Error during statitics calculation')
コード例 #2
0
 def computeStatistics(self, inRaster, inShape, inField):
     try:
         rasterized = rasterize(inRaster, inShape, inField)
         Yp, Yt = dataraster.get_samples_from_roi(inRaster, rasterized)
         CONF = ai.CONFUSION_MATRIX()
         CONF.compute_confusion_matrix(Yp, Yt)
         self.confusion_matrix = CONF.confusion_matrix
         self.Kappa = CONF.Kappa
         self.OA = CONF.OA
     except BaseException:
         pushFeedback('Error during statitics calculation')
コード例 #3
0
 def computeStatistics(self, inRaster, inShape, inField):
     progress = progressBar('Computing statistics...', 0)
     try:
         rasterized = self.rasterize(inRaster, inShape, inField)
         Yp, Yt = dataraster.get_samples_from_roi(inRaster, rasterized)
         CONF = ai.CONFUSION_MATRIX()
         CONF.compute_confusion_matrix(Yp, Yt)
         self.confusion_matrix = CONF.confusion_matrix
         self.Kappa = CONF.Kappa
         self.OA = CONF.OA
     except:
         QgsMessageLog.logMessage('Error during statitics calculation')
     progress.reset()
コード例 #4
0
    """
    """
    inShape = '/mnt/DATA/demo/train.shp'
    inField = 'Class'
    number = 50
    percent = True

    outValidation = '/tmp/valid1.shp'
    outTrain ='/tmp/train.shp'

    randomInSubset(inShape,inField,outValidation,outTrain,number,percent)

    """

    import function_dataraster
    function_dataraster.rasterize(inRaster, inVector, inField, '/tmp/roi.tif')
    X, Y, coords = function_dataraster.get_samples_from_roi(inRaster,
                                                            '/tmp/roi.tif',
                                                            getCoords=True)

    distanceArray = distMatrix(coords)
    rawCV = distanceCV(distanceArray, Y, 32, minTrain=-1, SLOO=True)

    #rawCV = distanceCV(distanceArray,label,distanceThresold=distance,minTrain=minTrain,SLOO=SLOO,maxIter=maxIter,verbose=False,stats=True)

    for tr, vl in rawCV:
        print(tr.shape)
        print(vl.shape)

    # randomInSubset('/tmp/valid.shp','level3','/tmp/processingd62a83be114a482aaa14ca317e640586/f99783a424984860ac9998b5027be604/OUTPUTVALIDATION.shp','/tmp/processingd62a83be114a482aaa14ca317e640586/1822187d819e450fa9ad9995d6757e09/OUTPUTTRAIN.shp',50,True)
コード例 #5
0
    def __init__(self,
                 inRaster,
                 inVector,
                 inField='Class',
                 outModel=None,
                 inSplit=1,
                 inSeed=0,
                 outMatrix=None,
                 inClassifier='GMM'):

        learningProgress = progressBar('Learning model...', 6)

        # Convert vector to raster
        try:
            try:
                temp_folder = tempfile.mkdtemp()
                filename = os.path.join(temp_folder, 'temp.tif')

                data = gdal.Open(inRaster, gdal.GA_ReadOnly)
                shp = ogr.Open(inVector)

                lyr = shp.GetLayer()
            except:
                QgsMessageLog.logMessage(
                    "Problem with making tempfile or opening raster or vector")

            # Create temporary data set
            try:
                driver = gdal.GetDriverByName('GTiff')
                dst_ds = driver.Create(filename, data.RasterXSize,
                                       data.RasterYSize, 1, gdal.GDT_Byte)
                dst_ds.SetGeoTransform(data.GetGeoTransform())
                dst_ds.SetProjection(data.GetProjection())
                OPTIONS = 'ATTRIBUTE=' + inField
                gdal.RasterizeLayer(dst_ds, [1], lyr, None, options=[OPTIONS])
                data, dst_ds, shp, lyr = None, None, None, None
            except:
                QgsMessageLog.logMessage("Cannot create temporary data set")

            # Load Training set
            try:
                X, Y = dataraster.get_samples_from_roi(inRaster, filename)
            except:
                QgsMessageLog.logMessage(
                    "Problem while getting samples from ROI with" + inRaster)
                QgsMessageLog.logMessage(
                    "Are you sure to have only integer values in your " +
                    str(inField) + " column ?")

            [n, d] = X.shape
            C = int(Y.max())
            SPLIT = inSplit
            os.remove(filename)
            os.rmdir(temp_folder)

            # Scale the data
            X, M, m = self.scale(X)

            learningProgress.addStep()  # Add Step to ProgressBar

            # Learning process take split of groundthruth pixels for training and the remaining for testing

            try:
                if SPLIT < 1:

                    # Random selection of the sample
                    x = sp.array([]).reshape(0, d)
                    y = sp.array([]).reshape(0, 1)
                    xt = sp.array([]).reshape(0, d)
                    yt = sp.array([]).reshape(0, 1)

                    sp.random.seed(inSeed)  # Set the random generator state
                    for i in range(C):
                        t = sp.where((i + 1) == Y)[0]
                        nc = t.size
                        ns = int(nc * SPLIT)
                        rp = sp.random.permutation(nc)
                        x = sp.concatenate((X[t[rp[0:ns]], :], x))
                        xt = sp.concatenate((X[t[rp[ns:]], :], xt))
                        y = sp.concatenate((Y[t[rp[0:ns]]], y))
                        yt = sp.concatenate((Y[t[rp[ns:]]], yt))

                else:
                    x, y = X, Y
            except:
                QgsMessageLog.logMessage("Problem while learning if SPLIT <1")

            learningProgress.addStep()  # Add Step to ProgressBar
            # Train Classifier
            if inClassifier == 'GMM':
                try:
                    # tau=10.0**sp.arange(-8,8,0.5)
                    model = gmmr.GMMR()
                    model.learn(x, y)
                    # htau,err = model.cross_validation(x,y,tau)
                    # model.tau = htau
                except:
                    QgsMessageLog.logMessage("Cannot train with GMMM")
            else:
                try:
                    from sklearn import neighbors
                    from sklearn.svm import SVC
                    from sklearn.ensemble import RandomForestClassifier

                    try:
                        model_selection = True
                        from sklearn.model_selection import StratifiedKFold
                        from sklearn.model_selection import GridSearchCV

                    except:
                        model_selection = False
                        from sklearn.cross_validation import StratifiedKFold
                        from sklearn.grid_search import GridSearchCV

                    try:

                        # AS Qgis in Windows doensn't manage multiprocessing, force to use 1 thread for not linux system
                        if os.name == 'posix':
                            n_jobs = -1
                        else:
                            n_jobs = 1

                        #
                        if inClassifier == 'RF':
                            param_grid_rf = dict(n_estimators=3**sp.arange(
                                1, 5),
                                                 max_features=sp.arange(1, 4))
                            y.shape = (y.size, )
                            if model_selection:
                                cv = StratifiedKFold(n_splits=3).split(x, y)
                                #cv = cv.get_n_splits(y)
                            else:
                                cv = StratifiedKFold(y, n_folds=3)

                            grid = GridSearchCV(RandomForestClassifier(),
                                                param_grid=param_grid_rf,
                                                cv=cv,
                                                n_jobs=n_jobs)
                            grid.fit(x, y)
                            model = grid.best_estimator_
                            model.fit(x, y)
                        elif inClassifier == 'SVM':
                            param_grid_svm = dict(gamma=2.0**sp.arange(-4, 4),
                                                  C=10.0**sp.arange(-2, 5))
                            y.shape = (y.size, )
                            if model_selection:
                                cv = StratifiedKFold(n_splits=5).split(x, y)
                            else:
                                cv = StratifiedKFold(y, n_folds=5)
                            grid = GridSearchCV(SVC(),
                                                param_grid=param_grid_svm,
                                                cv=cv,
                                                n_jobs=n_jobs)
                            grid.fit(x, y)
                            model = grid.best_estimator_
                            model.fit(x, y)
                        elif inClassifier == 'KNN':
                            param_grid_knn = dict(
                                n_neighbors=sp.arange(1, 20, 4))
                            y.shape = (y.size, )
                            if model_selection:
                                cv = StratifiedKFold(n_splits=3).split(x, y)
                            else:
                                cv = StratifiedKFold(y, n_folds=3)
                            grid = GridSearchCV(
                                neighbors.KNeighborsClassifier(),
                                param_grid=param_grid_knn,
                                cv=cv,
                                n_jobs=n_jobs)
                            grid.fit(x, y)
                            model = grid.best_estimator_
                            model.fit(x, y)
                    except:
                        QgsMessageLog.logMessage(
                            "Cannot train with classifier " + inClassifier)

                except:
                    QgsMessageLog.logMessage(
                        "You must have sklearn dependencies on your computer. Please consult the documentation for installation."
                    )

            learningProgress.prgBar.setValue(5)  # Add Step to ProgressBar
            # Assess the quality of the model
            if SPLIT < 1:
                # if  inClassifier == 'GMM':
                #          = model.predict(xt)[0]
                # else:
                yp = model.predict(xt)
                CONF = ai.CONFUSION_MATRIX()
                CONF.compute_confusion_matrix(yp, yt)
                sp.savetxt(outMatrix,
                           CONF.confusion_matrix,
                           delimiter=',',
                           fmt='%1.4d')

            # Save Tree model
            if outModel is not None:
                output = open(outModel, 'wb')
                pickle.dump([model, M, m], output)
                output.close()

            learningProgress.addStep()  # Add Step to ProgressBar

            # Close progressBar
            learningProgress.reset()
            learningProgress = None
        except:
            learningProgress.reset()
コード例 #6
0
ファイル: mainfunction.py プロジェクト: lennepkade/dzetsaka
    def __init__(self,inRaster,inVector,inField='Class',outModel=None,inSplit=100,inSeed=0,outMatrix=None,inClassifier='GMM',extraParam=False,feedback=None):
        """!@brief Learn model with a shp file and a raster image.
    
        **********
        Parameters
        ----------
        inRaster : Filtered image name ('sample_filtered.tif',str).
        inVector : Name of the training shpfile ('training.shp',str).
        inField : Column name where are stored class number (str).
        inSplit : (int) or str 'SLOO' or 'STAND'
            if 'STAND', extraParam['SLOO'] is by default False, and extraParam['maxIter'] is 5. \n
            if 'SLOO', extraParam['distance'] must be given. extraParam['maxIter'] is False, extraParam['minTrain'] is 0.5 for 50\% \n
            
            Please specify a extraParam['saveDir'] to save results/confusion matrix.
            
        inSeed : (int).
        outModel : Name of the model to save, will be compulsory for the 3rd step (classifying).
        outMatrix : Default the name of the file inRaster(minus the extension)_inClassifier_inSeed_confu.csv (str).
        inClassifier : GMM,KNN,SVM, or RF. (str).
        
    
        Output
        ----------
    
        Model file.
        Confusion Matrix.
    
        """
        # Convert vector to raster
        needXY = True
        pushFeedback('Learning model...',feedback=feedback)
        pushFeedback(0,feedback=feedback)
        total = 100/10
        
        SPLIT = inSplit
        
        if feedback=='gui':
            progress = pB.progressBar('Loading...',6)
        try:
            if isinstance(inRaster,np.ndarray):
                needXY = False
                X=inRaster
                
                if isinstance(inVector,np.ndarray):
                    Y=inVector
                else:
                    msg = 'You have to give an array for label when using array for raster'
                    pushFeedback(msg,feedback=feedback)
                
            if extraParam:
                if 'readROIFromVector' in extraParam.keys():
                    if extraParam['readROIFromVector'] is not False:
                        try:
                            from function_vector import readROIFromVector
                            X,Y = readROIFromVector(inVector,extraParam['readROIFromVector'],inField)
                            needXY = False
                        
                        except:
                            msg = 'Problem when importing readFieldVector from functions in dzetsaka'
                            pushFeedback(msg,feedback=feedback)
                if 'saveDir' in extraParam.keys():
                    saveDir = extraParam['saveDir']
                    if not os.path.exists(saveDir):
                        os.makedirs(saveDir)
                    if not os.path.exists(os.path.join(saveDir,'matrix/')):
                        os.makedirs(os.path.join(saveDir,'matrix/'))
            
            inVectorTest = False
            if type(SPLIT) == str :
                if SPLIT.endswith(('.shp','.sqlite')):
                    inVectorTest = SPLIT
                    

            if needXY:
                ROI = rasterize(inRaster,inVector,inField)
                        
            if inVectorTest:
                ROIt = rasterize(inRaster,inVectorTest,inField)
                X,Y = dataraster.get_samples_from_roi(inRaster,ROI)
                Xt,yt = dataraster.get_samples_from_roi(inRaster,ROIt)
                xt,N,n = self.scale(Xt)
                    #x,y = dataraster.get_samples_from_roi(inRaster,ROI,getCoords=True,convertTo4326=True)
                y=Y
                    
            # Create temporary data set
            if SPLIT=='SLOO':
     
                from sklearn.metrics import confusion_matrix

                try:
                    from function_vector import distanceCV,distMatrix
                except:
                    from .function_vector import distanceCV,distMatrix
                from sklearn.metrics import cohen_kappa_score,accuracy_score,f1_score
                
                """
                distanceFile = os.path.splitext(inVector)[0]+'_'+str(inField)+'_distMatrix.npy'
                if os.path.exists(distanceFile):
                    print('Distance array loaded')
                    distanceArray = np.load(distanceFile)
                    X,Y =  dataraster.get_samples_from_roi(inRaster,ROI)
                else:
                    print('Generate distance array')
                """
                
                            
                if 'readROIFromVector' in extraParam.keys():
                    if extraParam['readROIFromVector'] is not False:
                        try:
                            coords = extraParam['coords']
                        except:
                            pushFeedback('Can\'t read coords array',feedback=feedback)                        
                    else:
                        X,Y,coords = dataraster.get_samples_from_roi(inRaster,ROI,getCoords=True)                
                try:
                    coords = extraParam['coords']
                except:
                    X,Y,coords = dataraster.get_samples_from_roi(inRaster,ROI,getCoords=True)                
                
                distanceArray = distMatrix(coords)
                #np.save(os.path.splitext(distanceFile)[0],distanceArray)
          
            else:                
                if SPLIT=='STAND':
                    
                    from sklearn.metrics import confusion_matrix
                    try:
                        from .function_vector import standCV #,readFieldVector
                    except:
                        from function_vector import standCV #,readFieldVector
                    try:
                        from sklearn.metrics import cohen_kappa_score,accuracy_score,f1_score  
                    except:
                        pass
                    
                    if 'inStand' in extraParam.keys():
                        inStand = extraParam['inStand']
                    else:
                        inStand = 'stand'
                    STAND = rasterize(inRaster,inVector,inStand)
                    X,Y,STDs = dataraster.get_samples_from_roi(inRaster,ROI,STAND)
                    #ROIStand = rasterize(inRaster,inVector,inStand)
                    #temp, STDs = dataraster.get_samples_from_roi(inRaster,ROIStand)
                    
                    #FIDs,STDs,srs=readFieldVector(inVector,inField,inStand,getFeatures=False)
                    
                elif needXY:
                    X,Y =  dataraster.get_samples_from_roi(inRaster,ROI)
        
        except:                                        
            msg = "Problem with getting samples from ROI \n \
                Are you sure to have only integer values in your "+str(inField)+" field ?\n  "
            pushFeedback(msg,feedback=feedback)


        [n,d] = X.shape
        C = int(Y.max())
        SPLIT = inSplit
        
        try:
            os.remove(ROI)
        except:
            pass
        #os.remove(filename)
        #os.rmdir(temp_folder)

        # Scale the data
        X,M,m = self.scale(X)

        
        pushFeedback(int(1* total))
        if feedback=='gui':
            progress.addStep() # Add Step to ProgressBar
        # Learning process take split of groundthruth pixels for training and the remaining for testing
        

        try:
            if type(SPLIT)==int or type(SPLIT)==float:
                if SPLIT < 100:
    
                    # Random selection of the sample
                    x = np.array([]).reshape(0,d)
                    y = np.array([]).reshape(0,1)
                    xt = np.array([]).reshape(0,d)
                    yt = np.array([]).reshape(0,1)
    
                    np.random.seed(inSeed) # Set the random generator state
                    for i in range(C):
                        t = np.where((i+1)==Y)[0]
                        nc = t.size
                        ns = int(nc*(SPLIT/float(100)))
                        rp =  np.random.permutation(nc)
                        x = np.concatenate((X[t[rp[0:ns]],:],x))
                        xt = np.concatenate((X[t[rp[ns:]],:],xt))
                        y = np.concatenate((Y[t[rp[0:ns]]],y))
                        yt = np.concatenate((Y[t[rp[ns:]]],yt))

                else:
                    x,y=X,Y
                    self.x = x
                    self.y = y
            else:
                x,y=X,Y
                self.x = x
                self.y = y
        except:
            pushFeedback("Problem while learning if SPLIT <1",feedback=feedback)


        pushFeedback(int(2* total),feedback=feedback)
        if feedback=='gui':
            progress.addStep()
            
        pushFeedback('Learning process...',feedback=feedback)
        pushFeedback('This step could take a lot of time... So be patient, even if the progress bar stucks at 20% :)',feedback=feedback)
            
        if feedback=='gui':
            progress.addStep() # Add Step to ProgressBar
        # Train Classifier
        if inClassifier == 'GMM':
            try:
                from . import gmm_ridge as gmmr
            except:
                import gmm_ridge as gmmr

            try:
                # tau=10.0**sp.arange(-8,8,0.5)
                model = gmmr.GMMR()
                model.learn(x,y)
                
                # htau,err = model.cross_validation(x,y,tau)
                # model.tau = htau
            except:
                pushFeedback("Cannot train with GMM",feedback=feedback)
        else:
        
            #from sklearn import neighbors
            #from sklearn.svm import SVC
            #from sklearn.ensemble import RandomForestClassifier
            
            #model_selection = True
            from sklearn.model_selection import StratifiedKFold
            from sklearn.model_selection import GridSearchCV


            try:
                
                if extraParam:
                    if 'param_algo' in extraParam.keys():
                        param_algo = extraParam['param_algo']
                        
                # AS Qgis in Windows doensn't manage multiprocessing, force to use 1 thread for not linux system
                
                if SPLIT=='STAND':
                    label = np.copy(Y)
                    
                    if extraParam:
                        if 'SLOO' in extraParam.keys():
                            SLOO = extraParam['SLOO']
                        else:
                            SLOO=False
                        if 'maxIter' in extraParam.keys():
                            maxIter = extraParam['maxIter']
                        else:
                            maxIter=5
                    else:
                        SLOO=False
                        maxIter=5
                    
                    rawCV = standCV(label,STDs,maxIter,SLOO,seed=inSeed)
                    print(rawCV)
                    cvDistance = [] 
                    for tr,vl in rawCV : 
                        #sts.append(stat)
                        cvDistance.append((tr,vl))
                    
                if SPLIT=='SLOO':
                    # Compute CV for Learning later
                    
                    label = np.copy(Y)     
                    if extraParam:
                        if 'distance' in extraParam.keys():
                            distance = extraParam['distance']
                        else: 
                            pushFeedback('You need distance in extraParam',feedback=feedback)
                    
                        if 'minTrain' in extraParam.keys():
                            minTrain = float(extraParam['minTrain'])
                        else :
                            minTrain = -1
                             
                        if 'SLOO' in extraParam.keys():
                            SLOO = extraParam['SLOO']
                        else:
                            SLOO=True
                        
                        if 'maxIter' in extraParam.keys():
                            maxIter = extraParam['maxIter']
                        else:
                            maxIter=False
                        
                        if 'otherLevel' in extraParam.keys():
                            otherLevel = extraParam['otherLevel']
                        else:
                            otherLevel = False
                    #sts = []
                    cvDistance = []
                    
                    
                    """
                    rawCV = distanceCV(distanceArray,label,distanceThresold=distance,minTrain=minTrain,SLOO=SLOO,maxIter=maxIter,verbose=False,stats=False)                    
                    
                    """
                    #feedback.setProgressText('distance is '+str(extraParam['distance']))
                    pushFeedback('label is '+str(label.shape),feedback=feedback)
                    pushFeedback('distance array shape is '+str(distanceArray.shape),feedback=feedback)
                    pushFeedback('minTrain is '+str(minTrain),feedback=feedback)
                    pushFeedback('SLOO is '+str(SLOO),feedback=feedback)
                    pushFeedback('maxIter is '+str(maxIter),feedback=feedback)
                    
                    rawCV = distanceCV(distanceArray,label,distanceThresold=distance,minTrain=minTrain,SLOO=SLOO,maxIter=maxIter,stats=False)
                    
                    pushFeedback('Computing SLOO Cross Validation',feedback=feedback)
                        
                    for tr,vl in rawCV : 
                        
                        pushFeedback('Training size is '+str(tr.shape),feedback=feedback)
                        pushFeedback('Validation size is '+str(vl.shape),feedback=feedback)
                        #sts.append(stat)
                        cvDistance.append((tr,vl))
                    """
                    for tr,vl,stat in rawCV : 
                        sts.append(stat)
                        cvDistance.append((tr,vl))
                    """
                    #
                
                if inClassifier == 'RF':
                    
                    from sklearn.ensemble import RandomForestClassifier

                    param_grid = dict(n_estimators=3**np.arange(1,5),max_features=range(1,x.shape[1],int(x.shape[1]/3)))                      
                    if 'param_algo' in locals():
                        classifier = RandomForestClassifier(**param_algo)
                    else:
                        classifier = RandomForestClassifier()
                    n_splits=5                        

                    
                elif inClassifier == 'SVM':    
                    from sklearn.svm import SVC

                    param_grid = dict(gamma=2.0**np.arange(-4,4), C=10.0**np.arange(-2,5))                 
                    
                    if 'param_algo' in locals():
                        classifier = SVC(probability=True, **param_algo)
                        print('Found param algo : '+str(param_algo))
                    else:
                        classifier = SVC(probability=True,kernel="rbf") 
                    n_splits=5
                    
                elif inClassifier == 'KNN':
                    from sklearn import neighbors

                    param_grid = dict(n_neighbors = np.arange(1,20,4))            
                    if 'param_algo' in locals():
                        classifier = neighbors.KNeighborsClassifier(**param_algo)
                    else:
                        classifier = neighbors.KNeighborsClassifier()
                    
                    n_splits=3
                    
            except:
                pushFeedback("Cannot train with classifier "+inClassifier,feedback=feedback)
                
            if feedback=='gui':
                progress.prgBar.setValue(5) # Add Step to ProgressBar   
            
            if isinstance(SPLIT,int):
                cv = StratifiedKFold(n_splits=n_splits)#.split(x,y)
            else:
                cv = cvDistance
                            
            y.shape=(y.size,)
            
            if extraParam:
                if 'param_grid' in extraParam.keys():
                    param_grid = extraParam['param_grid']
                    
                    pushFeedback('Custom param for Grid Search CV has been found : '+str(param_grid),feedback=feedback)
                    
            grid = GridSearchCV(classifier,param_grid=param_grid, cv=cv,n_jobs=1)
            grid.fit(x,y)
            model = grid.best_estimator_
            model.fit(x,y)
            
            
            
            if isinstance(SPLIT,str):
                CM = []
                testIndex = []
                for train_index, test_index in cv:
                
                   X_train, X_test = X[train_index], X[test_index]
                   y_train, y_test = y[train_index], y[test_index]
                
                   model.fit(X_train, y_train)
                   X_pred = model.predict(X_test)
                   CM.append(confusion_matrix(y_test, X_pred))
                   testIndex.append(test_index)
                for i,j in enumerate(CM):
                    if SPLIT=='SLOO':
                        #np.savetxt((saveDir+'matrix/'+str(distance)+'_'+str(inField)+'_'+str(minTrain)+'_'+str(i)+'.csv'),CM[i],delimiter=',',fmt='%.d')
                        np.savetxt(os.path.join(saveDir,'matrix/'+str(distance)+'_'+str(inField)+'_'+str(minTrain)+'_'+str(i)+'.csv'),CM[i],delimiter=',',fmt='%.d')
                        if otherLevel is not False:
                            otherLevelFolder = os.path.join(saveDir,'matrix/level3/')
                            if not os.path.exists(otherLevelFolder):
                                os.makedirs(otherLevelFolder)
                            bigCM = np.zeros([14,14],dtype=np.byte)

                            arr= CM[i]
                            curLevel = otherLevel[testIndex[i]]
                            curLevel = np.sort(curLevel,axis=0)
                            for lvl in range(curLevel.shape[0]):
                                bigCM[curLevel.astype(int)-1,curLevel[lvl].astype(int)-1] = arr[:,lvl].reshape(-1,1)
                            np.savetxt(os.path.join(otherLevelFolder,str(distance)+'_'+str(inField)+'_'+str(minTrain)+'_'+str(i)+'.csv'),bigCM,delimiter=',',fmt='%.d')
                            
                    elif SPLIT=='STAND':
                        #np.savetxt((saveDir+'matrix/stand_'+str(inField)+'_'+str(i)+'.csv'),CM[i],delimiter=',',fmt='%.d')
                        np.savetxt(os.path.join(saveDir,'matrix/stand_'+str(inField)+'_'+str(i)+'.csv'),CM[i],delimiter=',',fmt='%.d')

            
        pushFeedback(int(9* total),feedback=feedback)
        
        # Assess the quality of the model
        if feedback=='gui':
            progress.prgBar.setValue(90)
            
        if inVectorTest or isinstance(SPLIT,int):
            if SPLIT!=100 or inVectorTest:
                #from sklearn.metrics import cohen_kappa_score,accuracy_score,f1_score
                # if  inClassifier == 'GMM':
                #          = model.predict(xt)[0]
                # else:
                yp = model.predict(xt)
                CONF = ai.CONFUSION_MATRIX()
                CONF.compute_confusion_matrix(yp,yt)
                
                if outMatrix is not None:
                    if not os.path.exists(os.path.dirname(outMatrix)):
                        os.makedirs(os.path.dirname(outMatrix))
                    np.savetxt(outMatrix,CONF.confusion_matrix,delimiter=',',header='Columns=prediction,Lines=reference.',fmt='%1.4d')
    
                if inClassifier !='GMM':
                    for key in param_grid.keys():
                        message = 'best '+key+' : '+str(grid.best_params_[key])
                        if feedback == 'gui':
                            QgsMessageLog.logMessage(message)    
                        elif feedback:
                            feedback.setProgressText(message)
                        else:
                            print(message)
                
                
                """
                self.kappa = cohen_kappa_score(yp,yt)
                self.f1 = f1_score(yp,yt,average='micro')
                self.oa = accuracy_score(yp,yt)
                """
                res = {'Overall Accuracy':CONF.OA,'Kappa':CONF.Kappa,'f1':CONF.F1mean}
                
                for estim in res:
                    pushFeedback(estim+' : '+str(res[estim]),feedback=feedback)
                
        # Save Tree model
        self.model = model
        self.M= M
        self.m = m
        if outModel is not None:
            output = open(outModel, 'wb')
            pickle.dump([model,M,m,inClassifier], output)
            output.close()

        
        pushFeedback(int(10* total),feedback=feedback)
        if feedback=='gui':
            progress.reset()
            progress=None
コード例 #7
0
    def __init__(self, inRaster, inVector, inField='Class', outModel=None, inSplit=100,
                 inSeed=0, outMatrix=None, inClassifier='GMM', extraParam=False, feedback=None):
        """!@brief Learn model with a shp file and a raster image.

        **********
        Parameters
        ----------
        inRaster : Filtered image name ('sample_filtered.tif',str).
        inVector : Name of the training shpfile ('training.shp',str).
        inField : Column name where are stored class number (str).
        inSplit : (int) or str 'SLOO' or 'STAND'
            if 'STAND', extraParam['SLOO'] is by default False, and extraParam['maxIter'] is 5. \n
            if 'SLOO', extraParam['distance'] must be given. extraParam['maxIter'] is False, extraParam['minTrain'] is 0.5 for 50\% \n

            Please specify a extraParam['saveDir'] to save results/confusion matrix.

        inSeed : (int).
        outModel : Name of the model to save, will be compulsory for the 3rd step (classifying).
        outMatrix : Default the name of the file inRaster(minus the extension)_inClassifier_inSeed_confu.csv (str).
        inClassifier : GMM,KNN,SVM, or RF. (str).


        Output
        ----------

        Model file.
        Confusion Matrix.

        """
        # Convert vector to raster
        needXY = True
        pushFeedback('Learning model...', feedback=feedback)
        pushFeedback(0, feedback=feedback)
        total = 100 / 10

        SPLIT = inSplit

        if feedback == 'gui':
            progress = pB.progressBar('Loading...', 6)
        try:
            if isinstance(inRaster, np.ndarray):
                needXY = False
                X = inRaster

                if isinstance(inVector, np.ndarray):
                    Y = inVector
                else:
                    msg = 'You have to give an array for label when using array for raster'
                    pushFeedback(msg, feedback=feedback)

            if extraParam:
                if 'readROIFromVector' in extraParam.keys():
                    if extraParam['readROIFromVector'] is not False:
                        try:
                            from function_vector import readROIFromVector
                            X, Y = readROIFromVector(
                                inVector, extraParam['readROIFromVector'], inField)
                            needXY = False

                        except BaseException:
                            msg = 'Problem when importing readFieldVector from functions in dzetsaka'
                            pushFeedback(msg, feedback=feedback)
                if 'saveDir' in extraParam.keys():
                    saveDir = extraParam['saveDir']
                    if not os.path.exists(saveDir):
                        os.makedirs(saveDir)
                    if not os.path.exists(os.path.join(saveDir, 'matrix/')):
                        os.makedirs(os.path.join(saveDir, 'matrix/'))

            inVectorTest = False
            if isinstance(SPLIT, str):
                if SPLIT.endswith(('.shp', '.sqlite')):
                    inVectorTest = SPLIT

            if needXY:
                ROI = rasterize(inRaster, inVector, inField)

            if inVectorTest:
                ROIt = rasterize(inRaster, inVectorTest, inField)
                X, Y = dataraster.get_samples_from_roi(inRaster, ROI)
                Xt, yt = dataraster.get_samples_from_roi(inRaster, ROIt)
                xt, N, n = self.scale(Xt)
                #x,y = dataraster.get_samples_from_roi(inRaster,ROI,getCoords=True,convertTo4326=True)
                y = Y
            
            # Create temporary data set
            if SPLIT == 'SLOO':

                from sklearn.metrics import confusion_matrix

                try:
                    from function_vector import distanceCV, distMatrix
                except BaseException:
                    from .function_vector import distanceCV, distMatrix
                from sklearn.metrics import cohen_kappa_score, accuracy_score, f1_score

                """
                distanceFile = os.path.splitext(inVector)[0]+'_'+str(inField)+'_distMatrix.npy'
                if os.path.exists(distanceFile):
                    print('Distance array loaded')
                    distanceArray = np.load(distanceFile)
                    X,Y =  dataraster.get_samples_from_roi(inRaster,ROI)
                else:
                    print('Generate distance array')
                """

                if 'readROIFromVector' in extraParam.keys():
                    if extraParam['readROIFromVector'] is not False:
                        try:
                            coords = extraParam['coords']
                        except BaseException:
                            pushFeedback(
                                'Can\'t read coords array', feedback=feedback)
                    else:
                        X, Y, coords = dataraster.get_samples_from_roi(
                            inRaster, ROI, getCoords=True)
                try:
                    coords = extraParam['coords']
                except BaseException:
                    X, Y, coords = dataraster.get_samples_from_roi(
                        inRaster, ROI, getCoords=True)
                
                distanceArray = distMatrix(coords)
                # np.save(os.path.splitext(distanceFile)[0],distanceArray)

            else:
                if SPLIT == 'STAND':

                    from sklearn.metrics import confusion_matrix
                    try:
                        from .function_vector import standCV  # ,readFieldVector
                    except BaseException:
                        from function_vector import standCV  # ,readFieldVector
                    try:
                        from sklearn.metrics import cohen_kappa_score, accuracy_score, f1_score
                    except BaseException:
                        pass

                    if 'inStand' in extraParam.keys():
                        inStand = extraParam['inStand']
                    else:
                        inStand = 'stand'
                    STAND = rasterize(inRaster, inVector, inStand)
                    X, Y, STDs = dataraster.get_samples_from_roi(
                        inRaster, ROI, STAND)
                    #ROIStand = rasterize(inRaster,inVector,inStand)
                    #temp, STDs = dataraster.get_samples_from_roi(inRaster,ROIStand)

                    # FIDs,STDs,srs=readFieldVector(inVector,inField,inStand,getFeatures=False)

                elif needXY:
                    X, Y = dataraster.get_samples_from_roi(inRaster, ROI)
                

        except BaseException:
            msg = "Problem with getting samples from ROI \n \
                Are you sure to have only integer values in your " + str(inField) + " field ?\n  "
            pushFeedback(msg, feedback=feedback)
            
        [n, d] = X.shape
        C = int(Y.max())
        SPLIT = inSplit

        try:
            #pushFeedback(str(ROI),feedback=feedback)
            os.remove(ROI)
        except BaseException:
            pass
        # os.remove(filename)
        # os.rmdir(temp_folder)

        # Scale the data
        X, M, m = self.scale(X)

        pushFeedback(int(1 * total))
        if feedback == 'gui':
            progress.addStep()  # Add Step to ProgressBar
        # Learning process take split of groundthruth pixels for training and
        # the remaining for testing

        try:
            if isinstance(SPLIT, int) or isinstance(SPLIT, float):
                if SPLIT < 100:

                    # Random selection of the sample
                    x = np.array([]).reshape(0, d)
                    y = np.array([]).reshape(0, 1)
                    xt = np.array([]).reshape(0, d)
                    yt = np.array([]).reshape(0, 1)

                    np.random.seed(inSeed)  # Set the random generator state
                    for i in range(C):
                        t = np.where((i + 1) == Y)[0]
                        nc = t.size
                        ns = int(nc * (SPLIT / float(100)))
                        rp = np.random.permutation(nc)
                        x = np.concatenate((X[t[rp[0:ns]], :], x))
                        xt = np.concatenate((X[t[rp[ns:]], :], xt))
                        y = np.concatenate((Y[t[rp[0:ns]]], y))
                        yt = np.concatenate((Y[t[rp[ns:]]], yt))

                else:
                    x, y = X, Y
                    self.x = x
                    self.y = y
            else:
                x, y = X, Y
                self.x = x
                self.y = y
        except BaseException:
            pushFeedback(
                "Problem while learning if SPLIT <1",
                feedback=feedback)

        pushFeedback(int(2 * total), feedback=feedback)
        if feedback == 'gui':
            progress.addStep()

        pushFeedback('Learning process...', feedback=feedback)
        pushFeedback(
            'This step could take a lot of time... So be patient, even if the progress bar stucks at 20% :)',
            feedback=feedback)
        
        if feedback == 'gui':
            progress.addStep()  # Add Step to ProgressBar
        # Train Classifier
        if inClassifier == 'GMM':
            try:
                from . import gmm_ridge as gmmr
            except BaseException:
                import gmm_ridge as gmmr

            try:
                # tau=10.0**sp.arange(-8,8,0.5)
                model = gmmr.GMMR()
                model.learn(x, y)
                # htau,err = model.cross_validation(x,y,tau)
                # model.tau = htau
            except BaseException:
                pushFeedback("Cannot train with GMM", feedback=feedback)
        else:

            #from sklearn import neighbors
            #from sklearn.svm import SVC
            #from sklearn.ensemble import RandomForestClassifier

            #model_selection = True
            from sklearn.model_selection import StratifiedKFold
            from sklearn.model_selection import GridSearchCV

            try:

                if extraParam:
                    if 'param_algo' in extraParam.keys():
                        param_algo = extraParam['param_algo']

                # AS Qgis in Windows doensn't manage multiprocessing, force to
                # use 1 thread for not linux system

                if SPLIT == 'STAND':
                    label = np.copy(Y)

                    if extraParam:
                        if 'SLOO' in extraParam.keys():
                            SLOO = extraParam['SLOO']
                        else:
                            SLOO = False
                        if 'maxIter' in extraParam.keys():
                            maxIter = extraParam['maxIter']
                        else:
                            maxIter = 5
                    else:
                        SLOO = False
                        maxIter = 5

                    rawCV = standCV(label, STDs, maxIter, SLOO, seed=inSeed)
                    print(rawCV)
                    cvDistance = []
                    for tr, vl in rawCV:
                        # sts.append(stat)
                        cvDistance.append((tr, vl))

                if SPLIT == 'SLOO':
                    # Compute CV for Learning later

                    label = np.copy(Y)
                    if extraParam:
                        if 'distance' in extraParam.keys():
                            distance = extraParam['distance']
                        else:
                            pushFeedback(
                                'You need distance in extraParam', feedback=feedback)

                        if 'minTrain' in extraParam.keys():
                            minTrain = float(extraParam['minTrain'])
                        else:
                            minTrain = -1

                        if 'SLOO' in extraParam.keys():
                            SLOO = extraParam['SLOO']
                        else:
                            SLOO = True

                        if 'maxIter' in extraParam.keys():
                            maxIter = extraParam['maxIter']
                        else:
                            maxIter = False

                        if 'otherLevel' in extraParam.keys():
                            otherLevel = extraParam['otherLevel']
                        else:
                            otherLevel = False
                    #sts = []
                    cvDistance = []

                    """
                    rawCV = distanceCV(distanceArray,label,distanceThresold=distance,minTrain=minTrain,SLOO=SLOO,maxIter=maxIter,verbose=False,stats=False)

                    """
                    #feedback.setProgressText('distance is '+str(extraParam['distance']))
                    pushFeedback('label is ' +
                                 str(label.shape), feedback=feedback)
                    pushFeedback('distance array shape is ' +
                                 str(distanceArray.shape), feedback=feedback)
                    pushFeedback(
                        'minTrain is ' + str(minTrain),
                        feedback=feedback)
                    pushFeedback('SLOO is ' + str(SLOO), feedback=feedback)
                    pushFeedback(
                        'maxIter is ' + str(maxIter),
                        feedback=feedback)

                    rawCV = distanceCV(
                        distanceArray,
                        label,
                        distanceThresold=distance,
                        minTrain=minTrain,
                        SLOO=SLOO,
                        maxIter=maxIter,
                        stats=False)

                    pushFeedback(
                        'Computing SLOO Cross Validation',
                        feedback=feedback)

                    for tr, vl in rawCV:

                        pushFeedback('Training size is ' +
                                     str(tr.shape), feedback=feedback)
                        pushFeedback('Validation size is ' +
                                     str(vl.shape), feedback=feedback)
                        # sts.append(stat)
                        cvDistance.append((tr, vl))
                    """
                    for tr,vl,stat in rawCV :
                        sts.append(stat)
                        cvDistance.append((tr,vl))
                    """
                    #

                if inClassifier == 'RF':

                    from sklearn.ensemble import RandomForestClassifier

                    param_grid = dict(
                        n_estimators=3**np.arange(
                            1, 5), max_features=range(
                            1, x.shape[1], int(
                                x.shape[1] / 3)))
                    if 'param_algo' in locals():
                        classifier = RandomForestClassifier(**param_algo)
                    else:
                        classifier = RandomForestClassifier()
                    n_splits = 5

                elif inClassifier == 'SVM':
                    from sklearn.svm import SVC

                    param_grid = dict(
                        gamma=2.0**np.arange(-4, 4), C=10.0**np.arange(-2, 5))

                    if 'param_algo' in locals():
                        classifier = SVC(probability=True, **param_algo)
                        print('Found param algo : ' + str(param_algo))
                    else:
                        classifier = SVC(probability=True, kernel="rbf")
                    n_splits = 5

                elif inClassifier == 'KNN':
                    from sklearn import neighbors

                    param_grid = dict(n_neighbors=np.arange(1, 20, 4))
                    if 'param_algo' in locals():
                        classifier = neighbors.KNeighborsClassifier(
                            **param_algo)
                    else:
                        classifier = neighbors.KNeighborsClassifier()

                    n_splits = 3

            except BaseException:
                pushFeedback(
                    "Cannot train with classifier " +
                    inClassifier,
                    feedback=feedback)

            if feedback == 'gui':
                progress.prgBar.setValue(5)  # Add Step to ProgressBar

            if isinstance(SPLIT, int):
                cv = StratifiedKFold(n_splits=n_splits)  # .split(x,y)
            else:
                cv = cvDistance

            y.shape = (y.size,)

            if extraParam:
                if 'param_grid' in extraParam.keys():
                    param_grid = extraParam['param_grid']

                    pushFeedback(
                        'Custom param for Grid Search CV has been found : ' +
                        str(param_grid),
                        feedback=feedback)

            grid = GridSearchCV(
                classifier,
                param_grid=param_grid,
                cv=cv,
                n_jobs=1)
            grid.fit(x, y)
            model = grid.best_estimator_
            model.fit(x, y)

            if isinstance(SPLIT, str):
                CM = []
                testIndex = []
                for train_index, test_index in cv:

                    X_train, X_test = X[train_index], X[test_index]
                    y_train, y_test = y[train_index], y[test_index]

                    model.fit(X_train, y_train)
                    X_pred = model.predict(X_test)
                    CM.append(confusion_matrix(y_test, X_pred))
                    testIndex.append(test_index)
                for i, j in enumerate(CM):
                    if SPLIT == 'SLOO':
                        # np.savetxt((saveDir+'matrix/'+str(distance)+'_'+str(inField)+'_'+str(minTrain)+'_'+str(i)+'.csv'),CM[i],delimiter=',',fmt='%.d')
                        np.savetxt(
                            os.path.join(
                                saveDir,
                                'matrix/' +
                                str(distance) +
                                '_' +
                                str(inField) +
                                '_' +
                                str(minTrain) +
                                '_' +
                                str(i) +
                                '.csv'),
                            CM[i],
                            delimiter=',',
                            fmt='%.d')
                        if otherLevel is not False:
                            otherLevelFolder = os.path.join(
                                saveDir, 'matrix/level3/')
                            if not os.path.exists(otherLevelFolder):
                                os.makedirs(otherLevelFolder)
                            bigCM = np.zeros([14, 14], dtype=np.byte)

                            arr = CM[i]
                            curLevel = otherLevel[testIndex[i]]
                            curLevel = np.sort(curLevel, axis=0)
                            for lvl in range(curLevel.shape[0]):
                                bigCM[curLevel.astype(
                                    int) - 1, curLevel[lvl].astype(int) - 1] = arr[:, lvl].reshape(-1, 1)
                            np.savetxt(
                                os.path.join(
                                    otherLevelFolder,
                                    str(distance) +
                                    '_' +
                                    str(inField) +
                                    '_' +
                                    str(minTrain) +
                                    '_' +
                                    str(i) +
                                    '.csv'),
                                bigCM,
                                delimiter=',',
                                fmt='%.d')

                    elif SPLIT == 'STAND':
                        # np.savetxt((saveDir+'matrix/stand_'+str(inField)+'_'+str(i)+'.csv'),CM[i],delimiter=',',fmt='%.d')
                        np.savetxt(
                            os.path.join(
                                saveDir,
                                'matrix/stand_' +
                                str(inField) +
                                '_' +
                                str(i) +
                                '.csv'),
                            CM[i],
                            delimiter=',',
                            fmt='%.d')

        pushFeedback(int(9 * total), feedback=feedback)

        # Assess the quality of the model
        if feedback == 'gui':
            progress.prgBar.setValue(90)

        if inVectorTest or isinstance(SPLIT, int):
            if SPLIT != 100 or inVectorTest:
                #from sklearn.metrics import cohen_kappa_score,accuracy_score,f1_score
                # if  inClassifier == 'GMM':
                #          = model.predict(xt)[0]
                # else:
                yp = model.predict(xt)
                CONF = ai.CONFUSION_MATRIX()
                CONF.compute_confusion_matrix(yp, yt)

                if outMatrix is not None:
                    if not os.path.exists(os.path.dirname(outMatrix)):
                        os.makedirs(os.path.dirname(outMatrix))
                    np.savetxt(
                        outMatrix,
                        CONF.confusion_matrix,
                        delimiter=',',
                        header='Columns=prediction,Lines=reference.',
                        fmt='%1.4d')

                if inClassifier != 'GMM':
                    for key in param_grid.keys():
                        message = 'best ' + key + ' : ' + \
                            str(grid.best_params_[key])
                        if feedback == 'gui':
                            QgsMessageLog.logMessage(message)
                        elif feedback:
                            feedback.setProgressText(message)
                        else:
                            print(message)

                """
                self.kappa = cohen_kappa_score(yp,yt)
                self.f1 = f1_score(yp,yt,average='micro')
                self.oa = accuracy_score(yp,yt)
                """
                res = {
                    'Overall Accuracy': CONF.OA,
                    'Kappa': CONF.Kappa,
                    'f1': CONF.F1mean}

                for estim in res:
                    pushFeedback(estim + ' : ' +
                                 str(res[estim]), feedback=feedback)

        # Save Tree model
        self.model = model
        self.M = M
        self.m = m
        if outModel is not None:
            output = open(outModel, 'wb')
            pickle.dump([model, M, m, inClassifier], output)
            output.close()

        pushFeedback(int(10 * total), feedback=feedback)
        if feedback == 'gui':
            progress.reset()
            progress = None
コード例 #8
0
    def __init__(self,inRaster,inVector,inField='Class',inSplit=0.5,inSeed=0,outModel=None,outMatrix=None,inClassifier='GMM'):
          
          
        learningProgress=progressBar('Learning model...',6)
 
        # Convert vector to raster
        try:
            try:
                temp_folder = tempfile.mkdtemp()
                filename = os.path.join(temp_folder, 'temp.tif')
                
                data = gdal.Open(inRaster,gdal.GA_ReadOnly)
                shp = ogr.Open(inVector)
                
                lyr = shp.GetLayer()
            except:
                QgsMessageLog.logMessage("Problem with making tempfile or opening raster or vector")
            
            # Create temporary data set
            try:
                driver = gdal.GetDriverByName('GTiff')
                dst_ds = driver.Create(filename,data.RasterXSize,data.RasterYSize, 1,gdal.GDT_Byte)
                dst_ds.SetGeoTransform(data.GetGeoTransform())
                dst_ds.SetProjection(data.GetProjection())
                OPTIONS = 'ATTRIBUTE='+inField
                gdal.RasterizeLayer(dst_ds, [1], lyr, None,options=[OPTIONS])
                data,dst_ds,shp,lyr=None,None,None,None
            except:
                QgsMessageLog.logMessage("Cannot create temporary data set")
            
            # Load Training set
            try:
                X,Y =  dataraster.get_samples_from_roi(inRaster,filename)
            except:
                QgsMessageLog.logMessage("Problem while getting samples from ROI with"+inRaster)
            
            [n,d] = X.shape
            C = int(Y.max())
            SPLIT = inSplit
            os.remove(filename)
            os.rmdir(temp_folder)
            
            # Scale the data
            X,M,m = self.scale(X)
            
            
            learningProgress.addStep() # Add Step to ProgressBar
    
            # Learning process take split of groundthruth pixels for training and the remaining for testing
            try:
                if SPLIT < 1:
                    # progressBar, set Max to C
                    
                    # Random selection of the sample
                    x = sp.array([]).reshape(0,d)
                    y = sp.array([]).reshape(0,1)
                    xt = sp.array([]).reshape(0,d)
                    yt = sp.array([]).reshape(0,1)
                    
                    sp.random.seed(inSeed) # Set the random generator state
                    for i in range(C):            
                        t = sp.where((i+1)==Y)[0]
                        nc = t.size
                        ns = int(nc*SPLIT)
                        rp =  sp.random.permutation(nc)
                        x = sp.concatenate((X[t[rp[0:ns]],:],x))
                        xt = sp.concatenate((X[t[rp[ns:]],:],xt))
                        y = sp.concatenate((Y[t[rp[0:ns]]],y))
                        yt = sp.concatenate((Y[t[rp[ns:]]],yt))
                        #Add Pb
            except:
                QgsMessageLog.logMessage("Problem while learning if SPLIT <1")
                    
            else:
                x,y=X,Y
            
            learningProgress.addStep() # Add Step to ProgressBar
            # Train Classifier
            try:
                if inClassifier == 'GMM':
                    # tau=10.0**sp.arange(-8,8,0.5)
                    model = gmmr.GMMR()
                    model.learn(x,y)
                    # htau,err = model.cross_validation(x,y,tau)
                    # model.tau = htau
            except:
                QgsMessageLog.logMessage("Cannot train with GMMM")
            else:
                try:                    
                    from sklearn import neighbors
                    from sklearn.svm import SVC
                    from sklearn.ensemble import RandomForestClassifier
                    from sklearn.cross_validation import StratifiedKFold
                    from sklearn.grid_search import GridSearchCV
                except:
                    QgsMessageLog.logMessage("You must have sklearn dependencies on your computer. Please consult the documentation")
                try:    
                    
                     # AS Qgis in Windows doensn't manage multiprocessing, force to use 1 thread for not linux system
                    if os.name == 'posix':
                        n_jobs=-1
                    else:
                        n_jobs=1
                        
                    #
                    
                    if inClassifier == 'RF':
                        param_grid_rf = dict(n_estimators=3**sp.arange(1,5),max_features=sp.arange(1,4))
                        y.shape=(y.size,)    
                        cv = StratifiedKFold(y, n_folds=3)
                        grid = GridSearchCV(RandomForestClassifier(), param_grid=param_grid_rf, cv=cv,n_jobs=n_jobs)
                        grid.fit(x, y)
                        model = grid.best_estimator_
                        model.fit(x,y)        
                    elif inClassifier == 'SVM':
                        param_grid_svm = dict(gamma=2.0**sp.arange(-4,4), C=10.0**sp.arange(-2,5))
                        y.shape=(y.size,)    
                        cv = StratifiedKFold(y, n_folds=5)
                        grid = GridSearchCV(SVC(), param_grid=param_grid_svm, cv=cv,n_jobs=n_jobs)
                        grid.fit(x, y)
                        model = grid.best_estimator_
                        model.fit(x,y)
                    elif inClassifier == 'KNN':
                        param_grid_knn = dict(n_neighbors = sp.arange(1,20,4))
                        y.shape=(y.size,)    
                        cv = StratifiedKFold(y, n_folds=3)
                        grid = GridSearchCV(neighbors.KNeighborsClassifier(), param_grid=param_grid_knn, cv=cv,n_jobs=n_jobs)
                        grid.fit(x, y)
                        model = grid.best_estimator_
                        model.fit(x,y)
                except:
                    print 'Cannot train with Classifier '+inClassifier
                    QgsMessageLog.logMessage("Cannot train with Classifier"+inClassifier)
    
                    
            
            learningProgress.prgBar.setValue(5) # Add Step to ProgressBar
            # Assess the quality of the model
            if SPLIT < 1 :
                # if  inClassifier == 'GMM':
                #     yp = model.predict(xt)[0]
                # else:
                yp = model.predict(xt)
                CONF = ai.CONFUSION_MATRIX()
                CONF.compute_confusion_matrix(yp,yt)
                sp.savetxt(outMatrix,CONF.confusion_matrix,delimiter=',',fmt='%1.4d')
                
        
            # Save Tree model
            if outModel is not None:
                output = open(outModel, 'wb')
                pickle.dump([model,M,m], output)
                output.close()
            
            learningProgress.addStep() # Add Step to ProgressBar   
            
            # Close progressBar
            learningProgress.reset()
            learningProgress=None
        except:
            learningProgress.reset()