def handle2x(config, args): # resize input h1, w1, scale1 = pad_to_height(config.img_size[0], args.img1_height, args.img1_width) h2, w2, scale2 = pad_to_height(config.img_size[0], args.img2_height, args.img2_width) # load trained model net = get_autoencoder(config) net.load_state_dict(torch.load(args.model_path)) net.to(config.device) net.eval() # mean/std pose mean_pose, std_pose = get_meanpose(config) # get input input1 = openpose2motion(args.vid1_json_dir, scale=scale1, max_frame=args.max_length) input2 = openpose2motion(args.vid2_json_dir, scale=scale2, max_frame=args.max_length) input1 = preprocess_motion2d(input1, mean_pose, std_pose) input2 = preprocess_motion2d(input2, mean_pose, std_pose) input1 = input1.to(config.device) input2 = input2.to(config.device) # transfer by network out12 = net.transfer(input1, input2) out21 = net.transfer(input2, input1) # postprocessing the outputs input1 = postprocess_motion2d(input1, mean_pose, std_pose, w1 // 2, h1 // 2) input2 = postprocess_motion2d(input2, mean_pose, std_pose, w2 // 2, h2 // 2) out12 = postprocess_motion2d(out12, mean_pose, std_pose, w2 // 2, h2 // 2) out21 = postprocess_motion2d(out21, mean_pose, std_pose, w1 // 2, h1 // 2) if not args.disable_smooth: out12 = gaussian_filter1d(out12, sigma=2, axis=-1) out21 = gaussian_filter1d(out21, sigma=2, axis=-1) if args.out_dir is not None: save_dir = args.out_dir ensure_dir(save_dir) color1 = hex2rgb(args.color1) color2 = hex2rgb(args.color2) np.savez(os.path.join(save_dir, 'results.npz'), input1=input1, input2=input2, out12=out12, out21=out21) if args.render_video: print("Generating videos...") motion2video(input1, h1, w1, os.path.join(save_dir, 'input1.mp4'), color1, args.transparency, fps=args.fps, save_frame=args.save_frame) motion2video(input2, h2, w2, os.path.join(save_dir,'input2.mp4'), color2, args.transparency, fps=args.fps, save_frame=args.save_frame) motion2video(out12, h2, w2, os.path.join(save_dir,'out12.mp4'), color2, args.transparency, fps=args.fps, save_frame=args.save_frame) motion2video(out21, h1, w1, os.path.join(save_dir,'out21.mp4'), color1, args.transparency, fps=args.fps, save_frame=args.save_frame) print("Done.")
def handle2x(config, args): w1 = h1 = w2 = h2 = 512 # load trained model net = get_autoencoder(config) net.load_state_dict(torch.load(args.model_path)) net.to(config.device) net.eval() # mean/std pose mean_pose, std_pose = get_meanpose(config) # get input dataloder = get_dataloader('test', config) input1 = dataloder.dataset.preprocessing(args.path1, args.view1).unsqueeze(0) input2 = dataloder.dataset.preprocessing(args.path2, args.view2).unsqueeze(0) input1 = input1.to(config.device) input2 = input2.to(config.device) # transfer by network out12 = net.transfer(input1, input2) out21 = net.transfer(input2, input1) # postprocessing the outputs input1 = postprocess_motion2d(input1, mean_pose, std_pose, w1 // 2, h1 // 2) input2 = postprocess_motion2d(input2, mean_pose, std_pose, w2 // 2, h2 // 2) out12 = postprocess_motion2d(out12, mean_pose, std_pose, w2 // 2, h2 // 2) out21 = postprocess_motion2d(out21, mean_pose, std_pose, w1 // 2, h1 // 2) if not args.disable_smooth: out12 = gaussian_filter1d(out12, sigma=2, axis=-1) out21 = gaussian_filter1d(out21, sigma=2, axis=-1) if args.out_dir is not None: save_dir = args.out_dir ensure_dir(save_dir) color1 = hex2rgb(args.color1) color2 = hex2rgb(args.color2) np.savez(os.path.join(save_dir, 'results.npz'), input1=input1, input2=input2, out12=out12, out21=out21) if args.render_video: print("Generating videos...") motion2video(input1, h1, w1, os.path.join(save_dir, 'input1.mp4'), color1, args.transparency, fps=args.fps, save_frame=args.save_frame) motion2video(input2, h2, w2, os.path.join(save_dir, 'input2.mp4'), color2, args.transparency, fps=args.fps, save_frame=args.save_frame) motion2video(out12, h2, w2, os.path.join(save_dir, 'out12.mp4'), color2, args.transparency, fps=args.fps, save_frame=args.save_frame) motion2video(out21, h1, w1, os.path.join(save_dir, 'out21.mp4'), color1, args.transparency, fps=args.fps, save_frame=args.save_frame) print("Done.")