def __call__(self, pic, target): """ Args: pic (PIL Image or numpy.ndarray): Image to be converted to tensor. Returns: Tensor: Converted image. """ return F.to_tensor(pic), F.to_tensor(target)
def __call__(self, sample): """ Args: pic (PIL Image or numpy.ndarray): Image to be converted to tensor. Returns: Tensor: Converted image. """ return F.to_tensor(sample)
def __call__(self, img, label): """ Args: img (PIL Image): Image to be cropped. Returns: PIL Image: Cropped image. """ if self.padding > 0: img = F.pad(img, self.padding) # pad the width if needed if self.pad_if_needed and img.size[0] < self.size[1]: img = F.pad(img, (int((1 + self.size[1] - img.size[0]) / 2), 0)) # pad the height if needed if self.pad_if_needed and img.size[1] < self.size[0]: img = F.pad(img, (0, int((1 + self.size[0] - img.size[1]) / 2))) i, j, h, w = self.get_params(img, self.size) return F.to_tensor(F.crop(img, i, j, h, w)), F.to_tensor(F.crop(label, i, j, h, w))