コード例 #1
0
def _close_representations(data, clusters, number_cluster, list_neighbors):
    matrix_representation_close_i_j = np.zeros((number_cluster, data.shape[1]))
    for i in range(number_cluster):
        index_i = np.argwhere(clusters == list_neighbors[i]).flatten()
        for j in range(number_cluster):
            if i != j:
                index_j = np.argwhere(clusters == list_neighbors[j]).flatten()
                aux = fun._all_einsum(data[index_i, :], data[index_j, :])
                index_i_j = np.argwhere(aux == np.amin(aux))
                if index_i_j.shape[0] > 1:
                    index_i_j = np.array([index_i_j[0, :]])
                matrix_representation_close_i_j[i, :] = data[index_i[index_i_j[
                    0, 0]], :]
    return matrix_representation_close_i_j
コード例 #2
0
def _create_clusters(distance_matrix, weights, labels, number_of_neurons,
                     size_map_x, size_map_y, threshold):
    Tag_Matrix = np.arange(number_of_neurons).reshape((size_map_x, size_map_y))
    Tag_Matrix_Copy = np.arange(number_of_neurons).reshape(
        (size_map_x, size_map_y))
    cont_0 = 0
    cont_1 = number_of_neurons
    Index_Neurons = np.zeros((1, 2))
    Index_Neurons[0, 1] = cont_1
    for i in range(Tag_Matrix_Copy.shape[0]):
        for j in range(Tag_Matrix_Copy.shape[1]):
            if Tag_Matrix_Copy[i, j] < number_of_neurons:
                #Se etiqueta la red de neuronas por grupo respectivo
                Neurons = np.argwhere(distance_matrix[cont_0, :] < threshold)
                for k in range(Neurons.shape[0]):
                    index = np.argwhere(Neurons[k] == Tag_Matrix)
                    Tag_Matrix_Copy[index[:, 0], index[:, 1]] = cont_1
                #Se verifican las neuronas compartidas en dos grupos diferentes
                if i != 0 or j != 0:
                    Index_Neurons = np.append(Index_Neurons,
                                              [[cont_0, cont_1]],
                                              axis=0)
                    for k in range(Index_Neurons.shape[0]):
                        if Index_Neurons[k, 0] != cont_0:
                            Neurons_Copy = np.argwhere(distance_matrix[
                                int(Index_Neurons[k, 0]), :] < threshold)
                            Neurons_shared = np.intersect1d(
                                Neurons, Neurons_Copy)
                            #Si existen neuronas compartidas se asignan a los grupos correspondientes checando la distancia
                            if Neurons_shared.shape[0] > 0:
                                for l in range(Neurons_shared.shape[0]):
                                    if distance_matrix[int(
                                            Index_Neurons[k, 0]
                                    ), Neurons_shared[l]] < distance_matrix[
                                            cont_0, Neurons_shared[l]]:
                                        index = np.where(
                                            Neurons_shared[l] == Tag_Matrix)
                                        Tag_Matrix_Copy[
                                            index[0],
                                            index[1]] = Index_Neurons[k, 1]
                cont_1 += 1
            cont_0 += 1
    cont_1 -= (number_of_neurons - 1)
    #Re-etiquetado de la matriz de neuronas
    for i in range(cont_1):
        np.place(Tag_Matrix_Copy, Tag_Matrix_Copy == (number_of_neurons + i),
                 i)

    #Obtenermos los centroiodes de los grupos y Se asigna a la neuorona mas
    #cercana de cada centro como la neurona con mas influencia
    Tag_Matrix_Copy = Tag_Matrix_Copy.reshape((size_map_x * size_map_y))
    unique_elements, counts_elements = np.unique(Tag_Matrix_Copy,
                                                 return_counts=True)
    centroids = np.zeros((len(unique_elements)), dtype=int)
    for i in range(len(unique_elements)):
        index = np.argwhere(Tag_Matrix_Copy == i)
        centroid = np.mean(weights[index, :], axis=0)
        centroids[i] = index[np.argmin(
            fun._all_einsum(centroid, weights[index, :]))]
    #A partir de los centros se verifican de nuevo cuales neuronas que cumplen
    #con la condicion de distancia y threshold para un reetiquetado
    #print(centroids)
    for i in range(len(unique_elements)):
        index_Neurons = np.argwhere(
            distance_matrix[centroids[i], :] < threshold)
        index = np.argwhere(Tag_Matrix_Copy == i)
        complement = np.setdiff1d(index_Neurons, index)
        reshape = np.argmin(fun._all_einsum(weights[complement, :],
                                            weights[centroids, :]),
                            axis=1)
        for j in range(len(complement)):
            Tag_Matrix_Copy[complement[j]] = reshape[j]
    Tag_Matrix_Copy = Tag_Matrix_Copy.reshape((size_map_x, size_map_y))
    return Tag_Matrix_Copy
コード例 #3
0
def _get_distance_matrix(matrix):
    distance_matrix = fun._all_einsum(matrix, matrix)
    distance_matrix[np.tril_indices(matrix.shape[0], k=-1)] = 1000
    return distance_matrix
コード例 #4
0
def _generate_labels(data, weights):
    labels = np.argmin(fun._all_einsum(data, weights), axis=1)
    return labels
コード例 #5
0
def _create_classes(distance_matrix, threshold, data, weights, labels,
                    cluster_matrix, number_groups, hitmap, answer,
                    fixed_groups):
    #Se etiquetan los datos de entrada con base en la matriz etiquetada
    #             creada en la fun merge_and_Create_Protoclusters
    labels = labels + (cluster_matrix.shape[0] * cluster_matrix.shape[1])
    #print(Tag_Matrix.shape[0]*Tag_Matrix.shape[1])
    neurons_Labels = cluster_matrix.reshape(
        (cluster_matrix.shape[0] * cluster_matrix.shape[1]))
    for i in range(len(neurons_Labels)):
        index = np.argwhere(
            labels == (cluster_matrix.shape[0] * cluster_matrix.shape[1] + i))
        labels[index] = neurons_Labels[i]
    #print(np.unique(Labels))
    #Se definen las listas, counts, elements que se utilizaran en el ciclo de merge
    unique_elements, counts_elements = np.unique(labels, return_counts=True)
    values, counts = np.unique(neurons_Labels, return_counts=True)
    #print(unique_elements,values)
    limit_Groups = np.array(np.where(counts != np.amax(counts))).flatten()
    max_Counts = (np.amax(counts) + 1) * 10
    Groups = []
    neurons_Alone = []
    fix_Groups = []
    groups = []
    CDbw = []
    #Se obtiene la lista de los grupos en la red y neuronas no asociadas
    while (len(limit_Groups) > 0):
        index_Min = np.argwhere(unique_elements == np.argmin(counts))
        if len(index_Min) == 0:
            neurons_Alone.append(int(np.argmin(counts)))
        else:
            Groups.append(int(np.argmin(counts)))
        counts[np.argmin(counts)] = max_Counts
        limit_Groups = np.argwhere(counts != np.amax(counts))
    if answer == 'n' or answer == 'N':
        for i in range(len(Groups)):
            index = np.argwhere(neurons_Labels == Groups[i])
            #*******************************importante******************************
            groups.append(np.sum(hitmap[index]))
            #groups.append(len(hitmap[index])/len(index))
            #groups.append(np.amax(hitmap[index])/len(index))
        while (len(fix_Groups) < number_groups):
            index = np.argmax(groups)
            fix_Groups.append(Groups[index])
            Groups.remove(Groups[index])
            groups.remove(np.amax(groups))
    else:
        fix_Groups = fixed_groups
        for i in range(len(fix_Groups)):
            Groups.remove(fixed_groups[i])
    print(fix_Groups, Groups)
    #length = len(Groups)
    length_dynamic = len(Groups)
    groups_check = np.zeros((len(fix_Groups), 2))
    #Inicia el proceso de calcular el CDbw de todos los grupos pequeños
    #contra todos los grupos grandes excluyendo a las neuronas que no
    #tienen asociado ningun vector de entrada para realizar el merge
    while (len(Groups) > 0):
        CDbw.clear()
        for i in range(len(fix_Groups)):
            index_F = np.argwhere(neurons_Labels == fix_Groups[i])
            groups_check[i, 0] = fix_Groups[i]
            params_F = get_statistical_descriptors(index_F, weights)
            params_G = np.zeros((length_dynamic, ((3 * weights.shape[1]) + 1)))
            for j in range(length_dynamic):
                index_G = np.argwhere(neurons_Labels == Groups[j])
                params_G[j, :] = get_statistical_descriptors(index_G, weights)
            index_min = np.argmin(fun._all_einsum(params_F, params_G))
            groups_check[i, 1] = Groups[index_min]
        for i in range(len(groups_check)):
            merge_index = np.argwhere(unique_elements == groups_check[i, 1])
            fix_index = np.argwhere(unique_elements == groups_check[i, 0])
            nis = [
                counts_elements[int(merge_index)],
                counts_elements[int(fix_index)]
            ]
            list_neighboor = np.array([groups_check[i, 1], groups_check[i, 0]])
            stdev_average, stdev_vector = mri._calculate_stdev(
                data, labels, 2, list_neighboor)
            intra_den_c, intra_den_vector = mri._intra_density_function(
                data, weights, labels, nis, neurons_Labels, stdev_average, 2,
                list_neighboor)
            matrix_representation_close_i_j = mri._close_representations(
                data, labels, 2, list_neighboor)
            inter_den_vector, inter_den = mri._inter_density_function(
                data, labels, nis, 2, stdev_vector,
                matrix_representation_close_i_j, list_neighboor)
            sep_vector, sep_c = mri._sep_function(
                2, matrix_representation_close_i_j, inter_den_vector)
            CDbw.append(intra_den_c * sep_c)
        #Comienza el proceso de merge a los grupos con menor CDbw entre ellos
        min_CDbw = np.argmin(CDbw)
        merge = groups_check[min_CDbw, 1]
        fix = groups_check[min_CDbw, 0]
        length_dynamic -= 1
        #print("Grupos a mezclar",fix,merge,length_dynamic)
        index_Labels = np.array(np.where(labels == merge)).flatten()
        index_Neurons = np.array(np.where(neurons_Labels == merge)).flatten()
        labels[index_Labels] = fix
        neurons_Labels[index_Neurons] = fix
        Groups.remove(merge)
        unique_elements, counts_elements = np.unique(labels,
                                                     return_counts=True)
    unique_elements, counts_elements = np.unique(neurons_Labels,
                                                 return_counts=True)
    new_Groups = unique_elements
    #Se etiquetan las neuronas no asociadas con valores negativos a el número
    #de grupos formados en un inicio para etiquetar a los demás grupos
    for i in range(len(neurons_Alone)):
        element = int(np.argwhere(new_Groups == neurons_Alone[i]))
        new_Groups = np.delete(new_Groups, element)
        index = np.array(
            np.where(neurons_Labels == neurons_Alone[i])).flatten()
        neurons_Labels[index] = -(i + max_Counts)
    #Se etiquetan los grupos mezclados
    for i in range(len(new_Groups)):
        index = np.array(np.where(neurons_Labels == new_Groups[i])).flatten()
        neurons_Labels[index] = -(i * 10)
    unique_elements, counts_elements = np.unique(neurons_Labels,
                                                 return_counts=True)
    neurons_Labels *= -1
    for i in range(len(neurons_Alone)):
        index = np.argwhere(neurons_Labels == (i + max_Counts))
        neurons_Labels[index] = -(i + max_Counts)
    #Se re-etiquetan las neuronas no asignadas siguiendo con la lógica de etiquetado
    #empleada para los grupos grandes
    max_tag = np.amax(neurons_Labels)
    #print(max_tag)
    for i in range(len(neurons_Alone)):
        index = np.argwhere(neurons_Labels == -(max_Counts + i))
        neurons_Labels[index] = ((i + 1) * 10) + max_tag
    #Obtenermos los centroiodes de los grupos y Se asigna a la neuorona mas
    #cercana de cada centro como la neurona con mas influencia
    #Se regresa en forma de matriz el vector de neuronas etiquetadas
    merge_Matrix = neurons_Labels.reshape(
        (cluster_matrix.shape[0], cluster_matrix.shape[1]))

    #merge_Matrix = neurons_Labels.reshape((Tag_Matrix.shape[0],Tag_Matrix.shape[1]))
    return merge_Matrix