length = functions.check_length(args.test) #Get model data if args.model == None: model = os.path.join(os.path.join(base_folder, "Data"), "base_model_" + str(length)) else: model = args.model data = pickle.load(open(os.path.join(model, "data"))) #Tranform data if algorithm == "CROSSED": crossed_test = functions.convert_crossed(filename = args.test, length = length, output = "test_crossed_" + args.output, features = data['crossed_features'], positive = True, folder = "", extra = data['extra']) else: if algorithm == "REC": crossed_test = functions.convert_crossed( filename = args.test, length = length, output = "test_crossed_" + args.output, features = data['rec_crossed_features'], positive = True, folder = "", extra = data['extra']) ric_test = functions.convert_ric(filename = args.test, length = length, output = "test_ric_" + args.output, folder = "") #Apply algorithms if algorithm == "CROSSED": crossed_output = functions.run_crossed(filename=crossed_test,
negative = ric_negative_scores, optim = "SEN") #Do CRoSSeD #Check if feature file was provided and if it's ok if args.features != None: features = functions.read_feature_file(args.features) else: features = functions.read_feature_file(os.path.join( base_folder, "Data/crossed_features_" + str(length) + ".txt")) #Convert input files to CRoSSeD format crossed_positives = functions.convert_crossed( filename=args.positive, length=length, output="train_crossed_positives.fasta", features=features, positive=True, folder=unique, extra=extra) crossed_negatives = functions.convert_crossed( filename=args.negative, length=length, output="train_crossed_negatives.fasta", features=features, positive=False, folder=unique, extra=extra) #Train CRoSSeD model model = functions.train_crossed(positive=crossed_positives, negative=crossed_negatives, model="CRoSSeD_model", unique=unique, base_folder=base_folder) #Aply CRoSSeD to input data crossed_positives_output = functions.run_crossed( filename=crossed_positives, model=model,